導航:首頁 > 研究方法 > 分析粘土礦物水含量的方法

分析粘土礦物水含量的方法

發布時間:2022-07-02 08:47:57

Ⅰ 鑒定和研究礦物的其他主要方法簡介

鑒定和研究礦物的方法,隨工作目的和要求的不同而異(表16-1)。不同的方法各有其特點,它們對樣品的要求及所能解決的問題也各不相同。下面僅介紹某些重要方法的簡要特點。

1.成分分析方法

此類方法所得結果即為物質的化學成分數據。除經典化學分析系化學方法外,其他常用方法均屬物理方法,大多可同時分析多種元素,但一般不能區分變價元素的價態。

1)經典化學分析

此法准確度高,但靈敏度不很高,分析周期長,很不經濟。樣品要求是重量超過500mg的純度很高的單礦物粉末。

此法只適用於礦物的常量組分的定性和定量分析。主要用於新礦物種或亞種的詳細成分的確定和組成可變的礦物成分變化規律的研究。但不適用於稀土元素的分析。

表16-1 鑒定和研究礦物的主要方法一覽表

2)光譜分析

此法准確度較差(尤其是對含量大於3%的常量元素),但靈敏度高,且快速、經濟。可測元素達70多種。一次測試即能獲得全部主要元素及微量元素的信息。樣品要求:僅需數十毫克甚至數毫克的粉末樣品。

光譜分析通常用於礦物的微量和痕量元素的定性或半定量分析。特別是對於稀有分散元素也能獲得良好的效果。常作為化學分析的先導,以初步了解樣品中元素的種類和數量,供進一步分析或研究時參考。

3)原子吸收光譜分析

原子吸收光譜(AAS)分析靈敏度高,干擾少,快速、精確且較經濟。可測70多種元素,但一次只能分析一種元素,不宜於定性分析。樣品用量少,僅需數毫克粉末樣。

AAS主要用於10-6數量級微量元素和10-9數量級痕量元素的定量測定。適宜於測定沸點低、易原子化的金屬元素及部分半金屬元素。也可進行常量分析。但對稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高溫元素的測定的靈敏度較低,對鹵族元素、P、S、O、N、C、H等尚不能測定或效果不佳。

4)X射線熒光光譜分析

X射線熒光光譜(XRF)分析准確度較高,成本低,速度快,可不破壞樣品。可分析元素的范圍為9F~92U。XRF要求數克至十克(一般4~5g,最少可至數十毫克)較純的粉末樣。液態樣品也可分析。

XRF用於常量元素和微量元素的定性或定量分析。尤其對稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能測定變價元素的價態。

5)等離子體發射光譜分析

等離子體發射光譜(ICP)分析比光譜分析更為快速和靈敏,檢測下限可達(0.1×10-9)~(10×10-9)。精度較高,可達±3%,可測定除H、O、N和惰性氣體以外的所有元素。樣品要求:粉末,最少可以數毫克,也可以為液態樣品。

ICP適用於常量、微量和痕量元素的定性或定量分析。特別宜於分析包裹體中含量極低的重金屬離子。

6)激光顯微光譜分析

激光顯微光譜(LMES)分析靈敏度高,快速,有效,成本低,且被破壞樣品的面積小。可測70多種元素。樣品可以是光片、不加蓋玻璃的薄片或大小合適的手標本,樣品表面應拋光,切忌被污染;重砂、粉末或液體樣品要作某些處理。

LMES適於微粒、微量、微區的成分測定。用於研究礦物的化學成分及元素的賦存狀態,特別適用於微細疑難礦物的分析和鑒定。但是,目前對O、N、S等許多非金屬元素尚無法分析,對鹼金屬、難熔金屬(如Mo、Ta等)的檢測靈敏度較低。

7)質譜分析

質譜分析靈敏度和准確度均高,且分析速度快。以純度≥98%、粒徑<0.5mm的單礦物為樣品。樣量視礦物種不同而異,如硫化物需0.1~0.2g,硫酸鹽需2~5g。應避免用化學方法、浮選法等處理分離礦物,以防被污染。

質譜分析系10-6數量級定量分析,常用於准確測定各種岩石、礦物和有機物中元素的同位素組成。從10~30g的隕石標本中提取的稀有氣體即足以為分析所用。

8)中子活化分析

中子活化分析(NAA)靈敏度高,大多數元素的靈敏度達10-6~10-13g。准確度高,精度高(一般在±1%~±5%)。可測的元素達80多種。可同時測定多種元素,分析速度快,且不破壞樣品。樣品要求是純的單礦物粉末,樣量僅需數毫克至數十毫克。

NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接測定濃度很低的貴金屬元素,對稀土元素的分析特別有效。廣泛用於同位素組成、同位素地質年齡的測定。此外,也常用於測定包裹體成分。適用於分析隕石和月岩樣品的組成。

9)電子探針分析

電子探針分析(EPMA)靈敏度高,檢測下限可達10-16g。精度一般可達1%~2%,但對微量元素的精度則可差於20%。解析度高(約7nm)。放大倍數為數十倍至數十萬倍。分析速度快,直觀,且不破壞樣品。可測元素的范圍大:波譜分析為4Be~92U,能譜分析為11Na~92U。樣品可以是光片、不加蓋玻璃的薄片或礦物顆粒,且表面必須清潔、平坦而光滑。

EPMA系微米數量級微區的成分分析,宜於常量元素的定量分析。既可定點作定性或定量分析,又能作線掃描和面掃描分析,以研究元素的種類、分布和含量,了解礦物成分分布的均勻程度和元素在礦物中的賦存狀態,定量測定礦物內部各環帶的成分。最適於微小礦物和包裹體成分的定性或定量分析,以及稀有元素、貴金屬元素的賦存狀態的研究。此外,還可輔以形貌觀察。EP-MA只能分析固態物質,對有機物質的分析有困難;不能分析元素的同位素、各種形式的水(如 H2 O和 OH-等)及其他揮發組分,無法區分 Fe2+和 Fe3+

2.結構分析方法

此類方法一般不破壞樣品,其分析結果是各種譜圖,用於研究物質的晶體結構、分子結構、原子中電子狀態的精細結構。有些還可藉以鑒定樣品的物相,如寶石學上目前常利用紅外吸收光譜、激光拉曼光譜、可見光吸收光譜等技術來鑒別天然寶石和合成寶石。

1)X射線分析

X射線分析是晶體結構研究和物相分析的最常用而有效的方法。其具體方法種類繁多,一般可歸為單晶法和粉晶法兩類。

(1)單晶法:通常稱為X射線結構分析,又有照相法和衍射儀法之分。目前主要採用四圓單晶衍射儀法,其特點是自動化程度高,快速,准確度高。單晶法要求嚴格挑選無包裹體、無雙晶、無連晶和無裂紋的單晶顆粒樣品,其大小一般在0.1~0.5mm。因此在應用上受到一定限制。單晶法主要用於確定晶體的空間群,測定晶胞參數、各原子或離子在單位晶胞內的坐標、鍵長和鍵角等;也可用於物相鑒定,繪制晶體結構圖。

(2)粉晶法:又稱粉末法,也有照相法和衍射儀法之分。粉晶法以結晶質粉末為樣品,可以是含少數幾種物相的混合樣品,粒徑一般在1~10μm。樣品用量少,且不破壞樣品。照相法只需樣品5~10mg,最少可至1mg左右;衍射儀法用樣量一般為200~500mg。粉晶衍射儀法簡便,快速,靈敏度高,分辨能力強,准確度高。根據計數器自動記錄的衍射圖(diffraction diagram),能很快查出面網間距d值和直接得出衍射強度,故目前已廣泛用於礦物或混合物之物相的定性或定量分析。粉晶法主要用於鑒別結晶質物質的物相,精確測定晶胞參數,尤其對鑒定粘土礦物及確定同質多象變體、多型、結構的有序—無序等特別有效。

2)紅外吸收光譜分析

紅外吸收光譜(IR)測譜迅速,數據可靠,特徵性強。傅里葉變換紅外光譜儀具有很高的解析度和靈敏度及很快的掃描速度。樣品不受物理狀態限制,可以是氣態、液態、結晶質、非晶質或有機化合物。乾燥固體樣品一般只需1~2mg,並研磨成2μm左右的樣品。

IR已廣泛應用於物質的分子結構和成分研究。適用於研究不同原子的極性鍵,可精確測定分子的鍵長、鍵角、偶極矩等參數;推斷礦物的結構,鑒定物相;對研究礦物中水的存在形式、絡陰離子團、類質同象混入物的細微變化、有序—無序及相變等十分有效。IR廣泛用於粘土礦物和沸石族礦物的鑒定,也可對混入物中各組分的含量作定量分析。

3)激光拉曼光譜分析

激光拉曼光譜(LRS)系無損分析,其測譜速度快,譜圖簡單,譜帶尖銳,便於解釋。幾乎在任何物理條件(高壓、高溫、低溫)下對任何材料均可測得其拉曼光譜。樣品可以是粉末或單晶(最好是5mm或更大者),不需特別制備,粉末所需量極少,僅0.5μg即可。也可以是液體樣品(10-6ml)。

LRS和IR同為研究物質分子結構的重要手段,兩者互為補充。LRS適用於研究同原子的非極性鍵的振動。

4)可見光吸收光譜分析

可見光吸收光譜分析簡便、可信,不需挑選單礦物,不破壞樣品。以0.03mm標准厚度的薄片為樣品,但研究多色性時則需用單晶體。

此法主要用於研究物質中過渡元素離子的電子構型、配位態、晶體場參數和色心等。也常用於顏色的定量研究,探討透明礦物的呈色機理。可適於研究細小(粒徑在1~5mm)的礦物顆粒。

5)穆斯堡爾譜分析

穆斯堡爾譜分析又稱核磁伽馬共振(NGR)。分析准確、靈敏、快速,解譜較為容易。目前僅可測40多種元素近90種同位素。所研究的元素可以是主成分,也可是含量為萬分之幾的雜質。樣品可以是晶質或者非晶質;既可是單晶,也可是礦物或岩石的粉末。但樣品中必須含有一定濃度的與放射源中γ射線的核相同的元素。含鐵礦物樣品中Fe原子濃度為5mg/cm2為宜,硅酸鹽樣品量一般為100mg左右,因樣品中Fe含量等因素而異。

NGR主要用於研究57Fe和119Sn元素離子的價態、配位態、自旋態、鍵性、磁性狀態、佔位情況及物質結構的有序—無序和相變等,也可用於物相鑒定和快速成分分析。對粘土礦物及隕石、月岩、海底沉積物等晶質多相混合物的研究很有效。

6)電子順磁共振分析

電子順磁共振(EPR)分析也稱電子自旋共振(ESR)分析。靈敏度高。不破壞樣品。只適於研究順磁性離子:室溫下能測定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多數稀土元素離子則只能在低溫下測定。EPR分析對樣品要求不高:固體、液體(0.1~0.01ml)、壓縮氣體或有機化合物均可;可以是單晶,也可以是粉末多晶混合物,但一般以單晶(粒徑在2~9mm)為好。樣品中順磁性離子的濃度不超過1%,以0.1%~0.001%為宜。樣品不需任何處理。

EPR主要用於研究過渡金屬離子(包括稀土元素離子)的微量雜質的價態、鍵性、電子結構、賦存狀態、配位態、佔位情況、類質同象置換及結構的電子—空穴心、結構的有序—無序、相變等。也可作微量元素的定性或定量分析及地質年齡的測定等。在寶石學上,常用於鑒別天然寶石與合成寶石及研究寶石的染色機制。

7)核磁共振分析

核磁共振(NMR)分析目前最常用的高分辨的核磁共振儀廣泛應用於某些分子結構的測定,其解析度高,靈敏度高,測量速度快。但可測元素的種類有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。樣品可以是較濃的溶液(約0.5ml)、固體(一般20~80mg)或氣體。

NMR主要用於研究礦物中水的存在形式、質子的結構位置及離子的鍵性、配位態和有序—無序分布特徵等,研究相變和晶格缺陷。

3.其他測試方法

1)透射電子顯微鏡分析

透射電子顯微鏡(TEM)分析的功能主要是利用透射電子進行高分辨的圖象觀察,以研究樣品的形貌、晶格缺陷及超顯微結構(如超顯微雙晶和出溶片晶等)等特徵,同時用電子衍射花樣標定晶體的結構參數和晶體取向等。配有能譜儀(或波譜儀)者尚可進行微區常量元素的成分分析。TEM具有很高的解析度(達0.1nm左右)和放大倍數(為100倍~200萬倍),可以直接觀察到原子。樣品可以是光片、不加蓋玻璃的薄片或粉末樣,表面須平坦光滑。

2)掃描電子顯微鏡分析

掃描電子顯微鏡(SEM)分析的主要功能是利用二次電子進行高解析度的表面微形貌觀察。通常也輔以微區常量元素的點、線、面掃描定性和定量分析,查明元素的賦存狀態等。SEM的解析度高(達5nm左右),放大倍數為10倍~30萬倍。樣品可以是光片、不加蓋玻璃的薄片、粉末顆粒或手標本。其制樣簡單,圖象清晰,立體感強,特別適合粗糙表面的研究,如礦物的斷口、晶面的生長紋和階梯等觀察及顯微結構分析等。

3)微分干涉(相襯)顯微鏡分析

微分干涉(相襯)顯微鏡(DIC)能夠觀察礦物表面納米數量級的分子層厚度。反射型顯微鏡用於研究晶體表面微形貌,觀察晶體表面上的各種層生長紋和螺旋生長紋,從而探討晶體的生長機制;透射型顯微鏡用於研究岩石薄片中礦物的結晶狀態及內部顯微構造,能清晰看到微米數量級的微裂紋,從而有助於研究岩石受應力作用的方向和性質。微分干涉(相襯)顯微鏡的縱向解析度高,立體感強。其樣品可以是帶晶面的晶體顆粒或者薄片。

4)熱分析

熱分析系根據礦物在加熱過程中所發生的熱效應或重量變化等特徵來鑒定和研究礦物。廣泛採用的有差熱分析和熱重分析。

(1)差熱分析(DTA):是測定礦物在連續加熱過程中的吸熱(脫水、分解、晶格的破壞和類質同象轉變等)和放熱(氧化、結晶等)效應,以研究礦物的結構和成分變化。用於了解水的存在形式,研究物質的內部結構和結晶度,研究類質同象混入物及其含量,可進行物相的鑒定及其定量分析。尤其對粘土礦物、氫氧化物和其他含水礦物及碳酸鹽類等礦物的研究最為有效。DTA只適用於受熱後有明顯的物理、化學變化的物質,一般僅用於單相物質純樣的研究,樣量僅需100~200mg,粒度在0.1~0.25mm。DTA設備簡單,用樣量少,分析時間較短,但破壞樣品,且干擾因素多,混合樣品不能分離時會相互干擾。因此,必須與X射線分析、電子顯微鏡、化學分析等方法配合使用。

(2)熱重分析(TG):是測定礦物在加熱過程中質量的變化。熱重曲線的形式取決於水在礦物中的存在形式和在晶體結構中的存在位置。TG僅限於鑒定和研究含水礦物,並可確定其含水量。TG以純的礦物粉末為樣品,樣量一般需2~5g,且破壞樣品。TG常與DTA配合使用。目前正向微量(10-5g)分析發展。

Ⅱ 粘土岩的研究方法及其意義

對粒度細小的粘土岩,除野外正確描述其岩性、結構構造、產狀以及接觸關系之外,還要進行大量的室內研究工作,現將室內研究的主要方法簡述如下:

1)岩石物理性質的測定,如可塑性、燒結性、耐火性、吸水性、加水膨脹性、吸附性等。

2)粒度分析,利用篩分析、薩巴寧法、移液管法及密度計法測定粘土岩的粒度成分。

3)偏光顯微鏡觀察,研究粘土岩的結構、構造和礦物成分。

4)粘土油浸法,利用沉速分析,製成粘土集合體的定向薄片,用浸油測定它的光性常數,並觀察集合體的形態。

5)差熱分析,利用不同粘土礦物加熱時,吸熱、放熱的反應溫度不同,藉助儀器進行記錄,與標准礦物對比鑒定成分。

6)加熱脫水失重分析,這種方法很簡單,主要是藉助熱天平測定粘土礦物的重量變化,繪制脫水曲線來鑒定之。

7)電子顯微鏡法,將粘土礦物放大到4000~8000倍以上,精確地研究其形態,從而確定粘土的礦物成分。

8)倫琴射線分析,與已知礦物分析結果對比,鑒定粘土的礦物成分。

9)其他,如染色分析、硫同位素研究、化學分析、紅外吸收光譜分析、有機物的測定等。

粘土和粘土岩在自然界中分布十分廣泛,不僅可以直接為工業所利用,而且粘土岩是最重要的生油岩石之一,同時也往往是石油的良好蓋層。如大慶油田的白堊系泥岩,就是石油儲集的良好蓋層。對金屬熱液礦床來說,透水性的粘土岩是礦液良好的隔擋層,往往使礦體富集於粘土岩層之下。從水文工程地質方面來說,粘土岩是地下水良好的不透水層。高嶺石粘土質岩和蒙脫石粘土質岩能作為粘土礦床,因此對粘土及粘土岩的研究,具有十分重要的經濟意義。

Ⅲ 礦物物相及結構分析方法

在礦物物相分析和晶體結構研究中,最常用的方法是粉晶和單晶X射線衍射分析,其次為紅外和拉曼光譜分析、熱分析及陰極發光分析等。

1.X射線分析法

本方法在礦物晶體結構分析、礦物鑒定和研究等方面起著極其重要的作用,已成為不可缺少的常規分析手段。

X射線是一種波長很短(0.01~1nm)的電磁波,在實驗室里它是通過一個高度真空的玻璃或陶瓷管(X射線管)產生的。X射線管中有兩個金屬電極,陰極為鎢絲捲成,陽極為某種金屬的磨光面(習稱「靶」)。用兩根導線通入陰極3~4A的電流,在鎢絲周圍產生大量熱電子。在陰極和陽極之間加以高電壓(30~50 kV),鎢絲周圍的熱電子即向陽極作加速度移動。當高速運動的電子與陽極相碰時,運動驟然停止,電子的能量大部分變為熱能,少部分變成X射線由靶面射出。射入晶體的X射線(稱原始X射線S0),引起晶體中原子的電子振動,這些電子因而發出與原始X射線波長相同的次生X射線(如S1、S2)。晶體中各原子所射出的次生X射線在不同方向上具有不同的行程差,當某些方向上的行程差等於波長的整數倍時,X射線便相互疊加(增強)成為衍射線,通過探測器即可收集到衍射數據。

圖24-6 面網對X射線的衍射

圖24-6中各點代表晶體中相當的原子,面網1,2,3是一組平行的面網,面網間距為d,波長為λ的原始X射線S0沿著與面網成θ角(掠射角)的方向射入,並在S1方向產生「反射」。產生「反射」(即衍射)的條件是相鄰面網所「反射」的X射線的行程差等於波長的整數倍,即:nλ=2dsinθ(n=1,2,3,…整數,稱為「反射」的級次)。此式經轉換可得到

結晶學與礦物學

式中:dhkl為面網(hkl)的面網間距;θhkl為面網(hkl)的掠射角;λ為波長。該公式稱為布拉格公式。

X射線衍射分析是通過儀器得到晶體的面網間距d和衍射線的相對強度I/I0兩組衍射數據,根據衍射數據進行物象分析。

X射線衍射分析有粉晶(多晶)衍射分析和單晶衍射分析兩種方法。粉晶衍射採用粉末狀(1~10μm)多晶為樣品(50~100 mg),粉晶衍射儀通過轉動2θ角,用輻射探測器和計數器測定並記錄衍射線的方向和強度,獲得衍射圖譜(圖24-7)。衍射圖中每個衍射峰代表一組面網。每組面網的面網間距d直接列印在峰上,它的衍射強度與峰高成正比,用相對強度表示,即以最強峰的強度作為100,將其他各衍射峰與之對比確定相對強度I/I0。獲得衍射數據後,與鑒定表(ICDD卡片或其他礦物X射線鑒定表)中標准數據對比,即可作出礦物鑒定,也可採用計算機資料庫檢索分析軟體進行輔助鑒定。

粉晶衍射物相分析快速簡便,解析度高,記錄圖譜時間短,精度高,用計算機控制操作和進行數據處理,可直接獲得衍射數據,對礦物定性、定量都十分有效,目前已得到了廣泛的應用。

單晶衍射分析一般採用小於0.2~0.5mm的單個晶體(或單晶碎片)為測試樣品。目前較多用四圓測角系統的單晶衍射儀。它是通過一束單色X射線射入單晶樣品,用計算機控制4個圓協同作用,調節晶體的取向,使某一面網達到能產生衍射的位置,用計數器或平面探測器記錄衍射方向和強度。據此,可測定晶胞參數,確定空間群,求解原子坐標,計算鍵長、鍵角,最終得到晶體結構數據。

圖24-7 單晶硅粉末衍射圖(Mo靶)

2.紅外光譜和拉曼光譜分析法

紅外光譜(IR)為紅外波段電磁波(波長0.75~1000μm;頻率13333~10cm-1)與物質相互作用而形成的吸收光譜,是物質分子振動的分子光譜,反映分子振動的能級變化及分子內部的結構信息。

紅外吸收光譜是由礦物中某些基團分子不停地作振動和轉動運動而產生的。分子振動的能量與紅外射線的光量子能量相當,當分子的振動狀態改變時,就可以發射紅外光譜,而因紅外輻射激發分子振動時便產生紅外吸收光譜。分子的振動能量不是連續而是量子化的,但由於分子在振動躍遷過程中也常伴隨轉動躍遷,使振動光譜呈帶狀(圖24-8)。分子越大,紅外譜帶也越多。將一束不同波長的紅外光照射到礦物上,某些特定波長的紅外射線被吸收,就形成了這個礦物的紅外吸收光譜。每種礦物都有由其組成和結構決定的獨有的紅外吸收光譜,可以採用與標准化合物的紅外光譜對比的方法來做分析鑒定。

紅外光譜儀有兩類。一類是單通道測量的棱鏡和光柵光譜儀,屬色散型,它的單色器為棱鏡或光柵。另一類為傅里葉變換紅外光譜儀,它是非色散型的,有許多優點:可實現多通道測量,提高信噪比;光通量大,提高了儀器的靈敏度;波數值的精確度可達0.01cm-1;增加動鏡移動距離,可使分辨本領提高;工作波段可從可見區延伸到毫米區,可以實現遠紅外光譜的測定。

圖24-8 石英的紅外光譜圖

拉曼光譜(RS)為分子振動能級間的躍遷產生的聯合散射光譜。用單色光照射透明樣品時,一部分光子與樣品分子發生非彈性碰撞,進行能量交換(因分子大多處於基態,故光子通常將損失能量)後成為拉曼散射光。入射光頻率(v)與散射光頻率(v′)之差等於分子的某一簡正振動頻率(vi),而物質振動的頻率及強度由物質內部分子的結構和組成決定,因此,拉曼散射譜線能夠給出物質的組成和分子內部的結構信息。

現代激光拉曼光譜儀除其主要部件激發源(氬離子激光)、樣品室、信號檢測系統和數據處理系統外,還常加裝顯微鏡,構成顯微拉曼探針儀。其空間解析度為1μm2,檢測限為10-9~10-12g,是微粒、微區、微結構中的分子類別及含量鑒定的有力工具。

近幾十年來,紅外和拉曼光譜技術不斷有新的發展,成為礦物學和礦床地球化學研究的重要手段。此外,隨著寶玉石業的蓬勃發展,作為非破壞、快速鑒定的方法,紅外、拉曼光譜也在寶玉石鑒定中被廣泛認可和使用。

3.熱分析法

熱分析法是根據礦物在不同溫度下所發生的熱效應來研究礦物的物理和化學性質,目的在於求得礦物的受熱(或冷卻)曲線,以確定該礦物在溫度變化時所產生的吸熱或放熱效應。此法常用於鑒定肉眼或其他方法難以鑒定的隱晶質或細分散的礦物;特別適於鑒定和研究含水、氫氧根和二氧化碳的化合物,如粘土礦物、鋁土礦、某些碳酸鹽礦物、含水硼酸鹽及硫酸鹽礦物、非晶質的鈮、鉭礦物等;還可以測定礦物中水的類型。

熱分析法包括熱失重分析和差熱分析。

一些礦物在受熱後可能發生脫水、分解、排出氣體、升華等熱效應引起物質質量發生變化,在程序控溫下測量物質和溫度變化關系的方法稱熱重分析法,在加熱過程中測量得到物質質量和溫度的關系曲線稱熱失重曲線(圖24-9)。在含水礦物中測定礦物在不同溫度條件下失去所含水分的質量而獲得溫度-質量曲線,從而查明水在礦物中的賦存狀態和水在晶體結構中的作用。不同含水礦物具有不同的脫水曲線。利用這種方法,可以鑒定和研究含水礦物,如粘土礦物等。

操作過程是:從低溫起至高溫(1000℃左右)止逐漸以各種不同的固定溫度加熱礦物,至質量不再變化為止,然後稱礦物的質量,算出因加熱而損耗的質量(脫出的水分質量)。以損失質量的百分數及加熱的溫度為縱橫坐標繪成曲線,即得失重曲線。

圖24-9 熱失重曲線圖

差熱分析法是將礦物粉末與中性體(不產生熱效應的物質,常用煅燒過的Al2O3)分別同置於一高溫爐中,在加熱過程中,礦物發生吸熱(因相變、脫水或分解作用等引起)或放熱(因結晶作用、氧化作用等引起)效應,而中性體則不發生此效應,將兩者的熱差通過熱電偶,借差熱電流自動記錄出差熱曲線,線上明顯的峰、谷分別代表礦物在加熱過程中的吸熱和放熱效應。不同的礦物在不同的溫度階段,有著不同的熱效應。由此可與已知礦物標准曲線進行對比來鑒定礦物。本方法對粘土礦物、氫氧化物、碳酸鹽和其他含水礦物的研究最有效。

目前,礦物的差熱分析法有了很大的進展,不僅用來定性地鑒定礦物,有時還可以做定量分析、探討礦物在加熱時結構的變化和研究礦物的類質同象混入物等。差熱分析曲線的解釋如下:

1)含水礦物的脫水:普通吸附水脫水溫度為100~110℃;層間結合水或膠體水脫水溫度在400℃內,大多數在200或300℃內;架狀結構水脫水溫度400℃左右;結晶水脫水溫度在500℃內,分階段脫水;結構水脫水溫度在450℃以上。

2)礦物分解放出氣體:CO2,SO2等氣體的放出,曲線有吸熱峰。

3)氧化反應表現為放熱峰。

4)非晶態物質的析晶表現為放熱峰。

5)晶型轉變通常有吸熱峰或放熱峰。

6)熔化、升華、氣化、玻璃化轉變顯示為吸熱峰。

差熱分析有一定的局限性,只適用於受熱後有明顯的物理、化學變化的物質,並有許多干擾因素而影響效果。因此,它必須和其他測試方法結合起來,如和X射線分析、電子顯微鏡、化學分析等密切配合使用。

4.陰極發光分析法

陰極發光是物質表面在高能電子束轟擊下發光的現象。不同礦物或相同種類不同成因的礦物,在電子束的轟擊下,會發出不同顏色或不同強度的光,同時能顯示與晶體生長環境有關的晶體結構或生長紋,可輔助礦物鑒定。

陰極射線發光分析方法是研究礦物結構和能態的一種重要方法。近年來,這種分析方法的靈敏度和功能等都獲得很大改善,特別是在掃描電鏡中,將陰極射線發光、二次電子、背散射電子和X射線特徵譜等結合起來形成的綜合測量方法,成為研究礦物結構和微區性質的有力工具。

Ⅳ 證明土壤中有水的方法三中

中國土壤地理
pedogeography of China

中國土壤資源豐富、類型繁多,世界罕見。中國主要土壤發生類型可概括為紅壤、棕壤、褐土、黑土、栗鈣土、漠土、潮土(包括砂姜黑土)、灌淤土、水稻土、濕土(草甸、沼澤土)、鹽鹼土、岩性土和高山土等12系列。

紅壤系列
中國南方熱帶、亞熱帶地區的重要土壤資源,自南而北有磚紅壤、燥紅土(稀樹草原土)、赤紅壤(磚紅壤化紅壤)、紅壤和黃壤等類型。

磚紅壤
發育在熱帶雨林或季雨林下強富鋁化酸性土壤,在中國分布面積較小。海南島磚紅壤的分析資料表明:風化度很高,粘粒的二氧化硅/氧化鋁比值(以下同)低於1.5,粘土礦物含有較多的三水鋁礦、高嶺石和赤鐵礦,陽離子交換量很少,鹽基高度不飽和。

燥紅土
熱帶乾熱地區稀樹草原下形成的土壤,分布於海南島的西南部和雲南南部紅水河河谷等地,土壤富鋁化程度較低,土體或具石灰性反應。

赤紅壤
發育在南亞熱帶常綠闊葉林下,具有紅壤和磚紅壤某些性質的過渡性土壤。

紅壤和黃壤
均為中亞熱帶常綠闊葉林下生成的富鋁化酸性土壤,前者分布在干濕季變化明顯的地區,淀積層呈紅棕色或桔紅色,剖面下部有網紋和鐵錳結核,二氧化硅/氧化鋁比值為1.9~2.2,粘土礦物含有高嶺石、水雲母和三水鋁礦;後者分布在多雲霧,水濕條件較好的地區,以川、黔兩省為主,以土層潮濕、剖面中部形成黃色或蠟黃色淀積層為其特徵,粘土礦物含有較多的針鐵礦和褐鐵礦。
紅壤系列的土壤適於發展熱帶、亞熱帶經濟作物、果樹和林木,作物一年可二熟、乃至三熟、四熟,土壤生產潛力很大。目前尚有較大面積荒山、荒丘有待因地制宜加以改造利用。 棕壤系列 亦為中國東部濕潤地區發育在森林下的土壤,由南至北包括黃棕壤、棕壤、暗棕壤和漂灰土等土類。

黃棕壤
亞熱帶落葉闊葉林雜生常綠闊葉林下發育的弱富鋁化、粘化、酸性土壤,分布於長江下游,界於黃、紅壤和棕壤地帶之間,土壤性質兼有黃、紅壤和棕壤的某些特徵。

棕壤
主要分布於暖溫帶的遼東半島和山東半島,為夏綠闊葉林或針闊混交林下發育的中性至微酸性的土壤,特點是在腐殖質層以下具棕色的淀積粘化層,土壤礦物風化度不高,二氧化硅/氧化鋁比值3.0左右,粘土礦物以水雲母和蛭石為主,並有少量高嶺石和蒙脫石,鹽基接近飽和。

暗棕壤
又稱暗棕色森林土,是發育在溫帶針闊混交林或針葉林下的土壤,分布在東北地區的東部山地和丘陵,介於棕壤和漂灰土地帶之間,與棕壤的區別在於腐殖質累積作用較明顯,淋溶淀積過程更強烈,粘化層呈暗棕色,結構面上常見有暗色的腐殖質斑點和二氧化硅粉末。 漂灰土 過去稱為棕色泰加林土和灰化土,分布在大興安嶺中北部,是北溫帶針葉林下發育的土壤,亞表層具弱灰化或離鐵脫色的特徵,常出現漂白層,強酸性,鹽基高度不飽和,屬於生草灰化土和暗棕壤之間的過渡性土類,可認為是在地方性氣候和植被影響下的特殊土被。
棕壤系列土壤均為很重要的森林土壤資源。目前,不僅分布有較大面積的天然林可供採伐利用,為中國主要森林業生產基地;且大部分土壤,尤其是分布在丘陵平原上的黃棕壤和棕壤有很高的農用價值,多數已墾為農地和果園。

褐土系列
包括褐土、�土、黑壚土和灰褐土,這類土壤在中性或鹼性環境中進行腐殖質的累積,石灰的淋溶和淀積作用較明顯,殘積一淀積粘化現象均有不同程度的表現。

褐土
又稱褐色森林土,分布於中國暖溫帶東部半濕潤、半乾旱地區,形成於中生夏綠林下,其特點為腐殖質層以下具褐色粘化層、風化度低,二氧化硅/氧化鋁比值3.0~3.5,含有較多水雲母和蛭石等粘土礦物,石灰聚積以假菌絲形狀出現在粘化層之下。 �
土 褐土經長期施用土類堆積覆蓋和耕作影響,在剖面上部形成厚達30~50厘米以上的熟化層,即變成�土。主要分布於陝西的關中地區。

黑壚土
以深厚的淡黑色壚土層而得名。首先形成於半乾旱草原植被下,後又經長期耕種熟化的土壤,主要分布在陝北、晉西和隴東一帶的黃土地區。

灰褐土
又稱灰褐色森林土,是分布在乾旱和半乾旱地區山地森林下的土壤,具暗棕色或淺褐色的粘化層,因石灰淋溶程度的不同又分灰褐土和淋溶灰褐土兩個亞類。
在利用上,褐土系列除灰褐土是重要的林用地外,其他土壤為中國北方的旱作地,搞好水土保持,是發展農業生產的重要措施。

黑土系列
中國溫帶森林草原和草原區的地帶性土壤,包括灰黑土(灰色森林土)、黑土、白漿土和黑鈣土。以強烈的腐殖質累積過程為特點。

灰黑土
又稱灰色森林土。處在濕潤的地區,以大興安嶺的西坡最為集中,植被為森林類型,林下草灌植物繁茂,生草過程較強,有機質累積量大,土壤具較明顯的淋溶作用和粘粒移動淀積現象。

黑土
土壤水分狀況較充沛,相對濕潤,植被為草原化草甸,當地稱「五花草塘」,土壤有機質的累積量較高,具有黑色而深厚的土層,腐殖質層厚達30~70厘米以上,底土常出現輕度潛育特徵。

白漿土
表層腐殖質層下具灰白色的白漿層而得名。分布在東北地區東部山間盆地和谷地,氣候濕潤,植被類型為喜濕性的淺根植物,土壤有機質累積量不及黑土,因有機質分解程度差,而常具泥炭化特徵,白漿土表層有機質的含量達8~10%,白漿層下質地多屬重壤土和粘土;白漿層質地相對較輕,鐵的淋失十分明顯,粘土礦物以水雲母為主,並有少量高嶺石和無定物質。

黑鈣土
分布在半乾旱地區,植被以草原類型為主,也有草甸草原植物,有機質的累積量小,分解強度較黑土大,腐殖質層一般厚約30~40厘米;石灰在土壤中淋溶淀積,常在60~90厘米處形成粉末狀或假菌狀的鈣積層,是黑鈣土區別於其他黑土的重要特徵。
黑土系列的土壤以東北地區分布的面積最廣,適於發展農、牧業和林業,特別是黑土、黑鈣土和白漿土是發展農業的重要對象,除已墾者外,尚有較大面積的荒地可供開墾,農業生產潛力巨大。

栗鈣土系列
包括栗鈣土、棕鈣土和灰鈣土,是中國北方分布范圍極廣的一些草原土壤。這類土壤均具有較明顯的腐殖質累積和石灰的淋溶一淀積過程,並多存在弱度的石膏化和鹽化過程。 栗鈣土 濕帶半乾旱地區乾草原下形成的土壤,表層為栗色或暗栗色的腐殖質量,厚度為25~45厘米,有機質含量多在1.5~4.0%;腐殖質層以下為含有多量灰白色斑狀或粉狀石灰的鈣積層,石灰含量達10~30%。中國栗鈣土土壤性質表現出明顯的地區差異。東部內蒙古高原的栗鈣土具少腐殖質、少鹽化、少鹼化和無石膏或深位石膏及弱粘化特點,而西部新疆地區在底土有數量不等的石膏和鹽分聚積,腐殖質的含量也相對較高,但土壤無鹼化和粘化現象。

棕鈣土
與栗鈣土相比較,其腐殖質累積過程更弱,而石灰的聚積過程則大為增強,鈣積層的位置在剖面中普遍升高,形成於溫帶荒漠草原環境,主要分布於內蒙古高原的中西部、鄂爾多斯高原的西部和准噶爾盆地的北部,是草原向荒漠過渡的地帶性土壤。

灰鈣土
其形成常與黃土母質相聯系,分布面積以黃土高原的西北部、河西走廊的東段和新疆的伊犁河谷最為集中,土壤剖面分化弱,發生層次不及栗鈣土、棕鈣土清晰,腐殖質層的基本色調為淺黃棕帶灰色,鈣積層不明顯,表層有機質含量0.5~3.0%,且下延較深,一般可達50~70厘米。
栗鈣土系列土壤是中國主要的牧業基地,也是重要的旱作農業區,需因地制宜實行農牧結合,改良草場和建立人工飼草料基地。

漠土系列
中國西北荒漠地區的重要土壤資源,包括灰漠土、灰棕漠土、棕漠土和龜裂土等,共同特徵是:具有多孔狀的荒漠結皮層,腐殖質含量低,石灰含量高,且表聚性強,石膏和易溶性鹽分在剖面不大的深度內聚積,存在較明顯的殘積粘化和鐵質染紅現象以及整個剖面的厚度較薄和石礫含量多(龜裂土和灰漠土除外)等。在成土過程中主要表現為鈣化作用(石灰聚積)、石膏化與鹽化作用、弱的鐵質化作用,同時風成作用相當明顯。

灰漠土
發育在溫帶荒漠邊緣細土物質上的土壤,主要分布在新疆准噶爾盆地南部沖積平原和北部剝蝕高原、河西走廊的中、西段及阿拉善高原的東部。新疆灰漠土表層有機質含量在1.0%左右,腐殖質層極不明顯,石灰的最大含量可達10~30%,聚層出現在20或30厘米以下,易溶性鹽含鹽最大的層次在40厘米以下,往往與石膏層相聯系,土壤礦物風化處於脫鉀階段,二氧化硅/氧化鋁比值4.0左右;粘土礦物以水雲母為主。

灰棕漠土
溫帶荒漠條件下和粗骨母質上發育的土壤,在西北佔有很大的面積,同灰漠土比較,腐殖質的累積作用更弱,幾無腐殖質層,表層有機質含量很少超過0.5%,且隨深度增加含量亦無多大變化,C/N比值很窄,多在4~7,但石灰的含量以表層或亞表層最高,且石膏的聚積較普遍,在10~40厘米處常形成小粒狀或纖維狀結晶的石膏層,石膏的最大含量可達30%以上。

棕漠土
暖溫帶半灌木-灌木荒漠下發育的土壤,廣布於新疆的南部和東部。這類土壤基本上是與石質漠境或戈壁相適應,與北非的石漠(或稱石膏荒漠和石膏殼)近似,但其乾旱程度更強,以致在土壤中出現氯化物的鹽層,成為世界荒漠土壤中罕見的現象。

龜裂土
發育較年輕的荒漠土壤,分布在溫帶和暖溫帶荒漠區的細土平原上,常受暫短地表水流的影響。但不具水成土的性質,地表平坦、堅硬,呈灰白色,被網狀裂紋切成不規則的多角形裂片,形似鑲嵌在地上的龜裂圖案,是其最具代表性的特徵。
漠土系列在利用上主要受制於細土物質含量的多少和灌溉水源的有無。目前,大部分用作牧地,僅有小部分墾為農田。

潮土、灌淤土系列
中國重要的農耕土壤資源,包括潮土、灌淤土、綠洲土。這類土壤是在長期耕作、施肥和灌溉的影響下所形成。在成土過程中,獲得了一系列新的屬性,使土壤有機質累積、土壤質地及層次排列、鹽分剖面分布,都起了很大變化。

潮土(包括砂姜黑土)
曾稱淺色草甸土,主要分布於黃淮海平原,遼河下游平原,長江中、下游平原及汾、渭谷地,以種植小麥、玉米、高粱和棉花為主。土壤剖面中沉積層次明顯,粘砂相間,地下水位較淺,土壤中、低層氧化還原交互進行,有明顯的銹紋斑及碳酸鹽分異與聚積。有些地區出現沼澤化和鹽漬化。
黃河淤積平原潮土的機械組成,老河床和天然堤上多為砂土,老河床兩側緩斜平地多為輕壤土,淺平窪地則為粘土。土壤有機質含量僅0.6~1%。碳酸鈣含量在6~8%,含鉀量可達 2%左右,含磷量多在0.1~0.2%。其含鹽量一般不超過 0.1%;在窪地邊緣可達0.5~1%。土壤呈鹼性反應,pH值7.5~8.5。
潮土土層深厚,礦質養分豐富,有利於深根作物生長,但有機質、氮素和磷含量偏低,且易旱澇,局部地區有鹽漬化問題,亟待改良。

灌淤土
主要分布於銀川、內蒙古後套及遼西平原。灌淤層可厚達 1米以上,一般也可達30~70厘米。土壤剖面上下較均質,底部常見文化遺物。灌淤層下可見被埋藏的古老耕作表層。土壤的理化性質因地區不同而異。西遼河平原的灌淤土,質地較粘重,有機質含量約2~4%,鹽分含量,一般小於0.3%,不含石膏;河套地區的灌淤土,質地較砂松,有機質含量約1%,含鹽量較高。
灌淤土是中國半乾旱地區平原中的主要土壤,一年一熟,以春播作物為主,生長小麥、玉米、糜谷等。地下水位較淺,水源充沛;因排水條件較差,有次生鹽化現象,應注意灌排結合。

綠洲土
又稱灌漠土,主要分布於新疆及河西走廊的漠境地區的綠洲中,是乾旱地區的主要耕作土壤。灌溉淤積層甚至可厚達1.0~1.5米;在引用坎兒井灌溉地區,灌淤層不超過1米。這些厚層灌溉淤積層土壤層次分化不明顯,上部土層有機質含量一般在1~2%,下部可達0.5~0.7%。磷鉀含量均較豐。碳酸鈣含量一般在10-20%,且分布均勻。但易發生板結,有次生鹽化問題。採取灌溉與排水相結合,營造防風林帶與林網,合理輪作倒茬,多種綠肥、牧草,是提高肥力的主要途徑。
草甸、沼澤土系列 即濕土。為水成、半水成土壤類型。

草甸土
直接受地下水浸潤,在草甸植被覆蓋下發育而成。廣布於松嫩平原、三江平原,在內蒙古、新疆等地河流兩岸的泛濫平原、湖濱階地上,也有分布。
草甸土腐殖質含量一般較豐富,分布在東北地區的草甸土,暗色有機質層厚達1米以上,土壤底部常見二氧化硅粉末,土體中見銹色斑紋及鐵錳結核;在新疆地區的草甸土有機質層僅25厘米,常見大量石灰結核,並有鹽分累積。表層有機質含量約3~6%,甚或可高達10%。在1米深的土層中,其含量尚可達1%。在西北乾旱區有機質含量表層低於4%。在新疆、內蒙古的草甸土中,碳酸鈣含量可達10%。
草甸土開墾後,表層土壤壘結性減低,較前疏鬆,有機質含量亦隨之下降。這類土壤肥力較高,養分也較豐,水分供應良好,是主要墾殖對象;亦為重要牧場基地,合理安排農、牧關系十分重要。

沼澤土
在長期積水或過濕情況下形成。廣布於中國東北三江平原及川西松潘草地。均有深厚的腐殖質層或泥炭層。
因土壤長期處於還原狀態,產生了明顯的潛育過程,形成充分分解的藍灰色潛育層。土壤結持力甚低。在表層有機質層或泥炭層與底層藍灰色潛育層間,尚可見大量銹斑或灰斑的土層,亦可見鐵錳結核。沼澤土中有機質含量常在5~25%,泥炭層可高達40%以上,有機質分解不充分,C/N比值寬。大都尚未充分利用。 水

稻土系列
在中國境內,主要分布在秦嶺—淮河一線以南,其中長江中、下游平原、珠江三角洲、四川盆地和台灣西部平原最為集中。
水稻土是耕種活動的產物。是由各種地帶性土壤、半水成土和水成土經水耕熟化培育而成,其形成過程是在季節性淹水灌溉、耕作、施肥等措施影響下,進行氧化還原交替過程、有機質的合成與分解、復鹽基作用與鹽基的淋溶,及粘粒的分解、聚積與遷移、淋失,使原來的土壤特徵受到不同程度的改變,使剖面發生分異,而形成特有的土壤形態、理化和生物特性。
水稻土的剖面結構包括下列層次:耕作層(A)、犁底層(P)、滲育層(W)、 淀積層(B)、淀積潛育層(Bg)及潛育層(G)。耕作層淹水時水分飽和,呈半流泥糊狀或泥漿狀。排水落干後,呈包含有屑粒、碎塊的大塊狀結構,結構面見銹斑雜有植物殘體;犁底層較緊實,暗棕色的垂直結構發達,有銹紋和小鐵錳結核;滲育層由於水分滲透,鐵質淋洗強烈,顏色較淡;淀積層多呈棱塊狀結構,多銹紋、銹斑和鐵錳結核;淀積潛育層處在地下水變動范圍內,呈灰藍色,有較多的銹斑和銹紋結構不明顯;潛育層處於還原狀態,呈藍灰色結構。 水稻土大致可分為淹育、瀦育及潛育等三種類型。淹育型發育層段淺薄,屬初期發育的水稻土,底土仍見母土特性,如紅壤仍有紅色底層;瀦育型發育完整,具有完整的剖面結構;潛育型屬由潛育土或沼澤土發育而成。
水稻土是中國很重要的農業土壤資源,應根據土壤特性因地制宜加以改良,充分利用。 鹽鹼土系列 又可分為鹽土和鹼土。

鹽土
中國土壤中含可溶鹽較高的鹽土主要分布在北方乾旱、半乾旱地區,尤以內蒙古、寧夏、甘肅、清海和新疆為多。華北平原和汾、渭谷地也有零星分布。氣候乾旱、蒸發強烈、地勢低窪、含鹽地下水接近地表是鹽土形成的主要條件。鹽分累積的形態通常是地表出現白色鹽霜,作斑塊狀分布。含鹽量高的鹽土可出現鹽結皮厚度(小於3厘米)或鹽結殼(大於3厘米),在結皮或結殼以下為疏鬆的鹽與土的混合層,可由幾厘米到30~50厘米;甚或可見鹽結盤層。鹽分累積的特點是表聚性很強,逐漸向下鹽分遞減。沿海地帶鹽分累積特點是整層土體均含較高鹽分。
中國鹽土的鹽分組成甚為復雜。濱海地區的鹽土主要為氯化物鹽土;硫酸鹽鹽土則分布於新疆北部、甘肅河西走廊、寧夏銀川平原和內蒙古後套地區,但面積不大。而氯化物與硫酸鹽混合類型的鹽土,在中國鹽土中到處可見,以河北、內蒙古、寧夏、甘肅和新疆等省區最為集中。此外,東北松嫩平原、山西大同盆地等,在其鹽分組成中含有碳酸根,稱蘇打鹽土,鹼性特強,腐蝕植物根系,大部植物難以生長。
鹽土的改良應採取灌排、生物及耕作等綜合措施;種稻洗鹽也是改良鹽土的有效措施。 鹼土 在中國分布面積較小,大都零星分布於鹽土地區,特點是表層含鹽量一般不超過0.5%,但土壤溶液中普遍含有蘇打。在吸收復合體中(尤其是鹼化層)代換性鈉占代換總量20%以上;pH值可達 9.0或更高。土壤有機與無機部分高度分散,膠粒和腐殖質淋溶下移,使表土質地變輕,而膠粒聚積的鹼化層則相對粘重,有時形成柱狀結構,濕時膨脹泥濘,干時收縮板結,通透性與耕性均極差。過高的鹼度可以毒害植物根系,過多的交換性鈉可引起一系列不良的理化性質,對植物生長危害極大。
鹼土的形成與發育因地區而異,如松遼平原的鹼土是由於蘇打鹽土在脫鹽過程中,鈉離子進入土壤吸收復合體而形成的。華北平原的鹼土(當地稱瓦鹼)是由鹽化潮土或鹽土在脫鹽過程中,突出了土壤的鹼化特性,表層出現鹼殼。前者代換性鈉含量較高(7~10毫克當量/100克土),鹼化度大都在20~40%;後者在質地較輕的土壤中僅1~2毫克當量/100克土,在粘重土壤中也僅5~7毫克當量/100克土,可能屬於初期形成的鹼土。鹼土的改良除上述水利及農業措施外,尚需採取施用石膏和磷石膏等化學改良措施。

岩性土系列
包括紫色土、石灰土、磷質石灰土、黃綿土(黃土性土)和風沙土。這類土壤性狀仍保持母岩或成土母質特徵。

紫色土
紫紅色岩層上發育的土壤。以四川盆地分布最廣,在南方諸省盆地中零星分布。紫色土有機質含量 1.0%左右,其發育程度較同地區的紅、黃壤為遲緩,尚不具脫硅富鋁化特徵,屬化學風化微弱的土壤,呈中性至微鹼性反應,pH值為7.5~8.5,石灰含量隨母質而異,鹽基飽和度達80~90%。紫色土礦質養分豐富,在四川盆地的丘陵地區中為較肥沃土壤,其農業利用價值很高。利用中需防止水土流失和注意蓄水灌溉、增施有機肥料、合理輪作等。 石灰(岩)土 發育在石灰岩上的岩成土。在中國熱帶和亞熱帶濕潤地區,凡有石灰岩出露之地均有分布,但主要分布於廣西、貴州和雲南境內。在石灰岩體出露的喀斯特地區多形成較為年幼的石灰(岩)土。石灰(岩)土的植被多為喜鈣植物如蕨類、五節芒、白茅等。這類植物的有機質成為石灰土腐殖化作用的物質基礎。石灰(岩)土可分為黑色石灰土、棕色石灰土和紅色石灰土。①黑色石灰土,有機質含量豐富,呈良好團粒結構,土色暗黑,中性至鹼性反應(pH6.5~8.0),土層厚薄不一。②棕色石灰土,常見於山麓坡地,色棕粘重,不均質石灰反應。③ 紅色石灰土,土色鮮紅,剖面上部多無石灰反應,表土pH6.5,心土7.0~7.5。 磷質石灰土 分布於中國南海的東沙、西沙、中沙和南沙群島。由於島嶼地處熱帶,大都由珊瑚礁構成。磷質石灰土即於珊瑚礁磐基礎上發育而成,成土母質為珊瑚灰岩或珊瑚、貝殼機械粉碎的細砂。在海島上的細砂表面聚積了大量富含磷質和有機質的海鳥糞,形成富含磷質的石灰性土壤。表層有機質含量可高達12%以上,全磷量26~32%。成為富含有機質的天然磷肥資源。

黃綿土
又稱黃土性土壤,廣布於黃河中游丘陵地區。土壤色澤與母質層極相近,質地均勻,疏鬆多孔,耕性良好,有機質含量低,僅0.5%,礦質養分豐富。

風沙土
主要分布在中國北部的半乾旱、乾旱和極端乾旱地區。風沙土的特徵是成土作用經常受到風蝕和沙壓,很不穩定,致使成土過程十分微弱,土壤性狀與風沙堆積物無多大改變。隨沙地的自然固定和土壤形成階段的發展,由流動風沙土到半固定、固定風沙土,土壤有機質含量逐漸增加,說明只要增加肥分與水分,使植被逐步穩定生長,也能成為農林牧用地。 高山土系列 高山土壤是指青藏高原和與之類似海拔,高山垂直帶最上部,在森林郁閉線以上或無林高山帶的土壤。由於高山帶上凍結與溶化交替進行,土壤有機質腐殖化程度低,礦物質分解也很微弱,土層淺薄,粗骨性強,層次分異不明顯。因而將高山土壤作為獨特的系列劃分開來;有黑氈土(亞高山草甸土)、草氈土(高山草甸土)、巴嘎土(亞高山草原土)、莎嘎土(高山草原土)、高山漠土和高山寒漠土之分。

黑氈土
主要分布於青藏高原東部和東南部。腐殖質累積明顯,腐殖化程度相對較高,鹽基不飽和或飽和度低,pH5~8,為高原優良牧場,也是小麥等作物的高產土壤。

草氈土
分布於原面平緩山坡,土體一般較濕潤,密生高山矮草草甸。表層有厚3~5厘米至10厘米不等的草皮,根系交織似毛氈狀,輕韌而有彈性,地表常因凍融交互作用呈鱗片狀滑脫。腐殖質層厚9~20厘米,含量6~14%,作淺灰棕或暗灰色,剖面厚度30~40厘米。大都用作夏季牧場。

巴嘎土
主要分布於喜馬拉雅山北側的高原寬谷湖盆,植被屬於乾草原類型。土壤有機質含量有時可達3~10%,剖面下部礫石背面常有薄膜狀碳酸鈣累積。大部為牧地,植被稀疏,載畜量低。

莎嘎土
分布於羌塘高原東南部,西喜馬拉雅山的山前地帶。土體較乾燥,腐殖質累積過程減弱,且出現積鈣過程,土體富含礫石,表層草根較少,不形成連續草皮層,有機質含量約1.5~3%,碳酸鈣聚積明顯,最大可達10%以上。土壤均較沙質,有風沙危害,均為牧地。

高山漠土
又稱冷漠土。主要分布於西藏羌塘高原,山原平坦,植被低矮而稀疏,蓋度5~10%。土壤中有機質累積微弱,0.4~0.6%,鹽分0.5~1.6%,碳酸鈣累積明顯。地表見白色鹽霜及結皮,多孔,含礫石較多,亦見石膏新生體,其下為礫質母質層,此類土壤甚少利用,僅在低窪處積水後,可飼養羊群。

高山寒漠土
脫離冰川影響最晚,成土年齡最短的土壤。主要分布在青藏高原冰雪活動帶以下冰緣附近。土層淺薄,剖面分化不明顯,土表有微向上突起的融凍結殼,通體大部為粗骨性,土壤礦物分解度甚低,植被為殼狀地墊及耐寒的墊狀點地梅等。

Ⅳ 礦物鑒定和研究的物理方法

礦物鑒定和研究的物理方法是以物理學原理為基礎,藉助各種儀器,以鑒定和研究礦物的各種物理性質。主要方法有:

(一)偏光顯微鏡和反光顯微鏡鑒定法

偏光顯微鏡和反光顯微鏡鑒定法是根據晶體的均一性和異向性,並利用晶體的光學性質而鑒定、研究礦物的方法,也是岩石學、礦床學經常使用的一種晶體光學鑒定方法。應用這種方法時,須將礦物、岩石或礦石磨製成薄片或光片,在透射光或反射光作用下,藉助顯微鏡以觀察和測定礦物的晶形、解理和各項光學性質(顏色、多色性、反射率,折射率、雙折射、軸性、消光角以及光性符號等)。

透射偏光顯微鏡用以觀察和測定透明礦物(非金屬礦物)。在裝有費氏台的偏光鏡下,還可用來研究類質同像系列礦物的成分變化規律以及礦物在空間上的排列方位與構造變動之間的關系。藉此可以繪制出岩組圖,用以解決地質構造問題。

反光顯微鏡(也稱礦相顯微鏡)主要用以觀察和測定不透明礦物(金屬礦物),並研究礦物相的相互關系以及其他特徵,藉以確定礦石礦物成分、礦石結構、構造及礦床成因方面的問題。

(二)電子顯微鏡研究法

電子顯微鏡研究法是一種適宜於研究1μm以下的微粒礦物的方法,尤以研究粒度小於5μm的具有高分散度的粘土礦物最為有效。可分為掃描電子顯微鏡(Scanningelectronmicroscope簡稱:SEM)和透射電子顯微鏡(簡稱:TEM)兩種方法。

粘土類礦物由於顆粒極細(一般2μm左右),常呈分散狀態,研究用的樣品需用懸浮法進行制備,待乾燥後,置於具有超高放大倍數的電子顯微鏡下,在真空中使通過聚焦系統的電子光束照射樣品,可在熒光屏上顯出放大數十萬倍甚至百萬倍的礦物圖像,據此以研究各種細分散礦物的晶形輪廓、晶面特徵、連晶形態等,用此來區別礦物和研究它們的成因。

此外,超高壓電子顯微鏡發出的強力電子束能透過礦物晶體,這就使得人們長期以來夢寐以求的直接觀察晶體結構和晶體缺陷的願望得到實現。

(三)X射線分析

X射線分析法是基於X射線的波長與結晶礦物內部質點間的距離相近,屬於同一個數量級,當X射線進入礦物晶體後可以產生衍射。由於每一種礦物都有自己獨特的化學組成和晶體結構,其衍射圖樣也各有其特徵。對這種圖樣進行分析計算,就可以鑒定結晶礦物的相(每個礦物種就是一個相),並確定它內部原子(或離子)間的距離和排列方式。因此,X射線分析已成為研究晶體結構和進行物相分析的最有效方法。

(四)光譜分析

光譜分析法的理論基礎是:各種化學元素在受到高溫光源(電弧或電火花)激發時,都能發射出它們各自的特徵譜線,經棱鏡或光柵分光測定後,既可根據樣品所出現的特徵譜線進行定性分析,也可按譜線的強度進行定量分析。這一方法是目前測定礦物化學成分時普遍採用的一種分析手段。其主要優點是樣品用量少(數毫克),能迅速准確地測定礦物中的金屬陽離子,特別是對於稀有元素也能獲得良好的結果。缺點是儀器復雜昂貴,並需較好的工作條件。

(五)電子探針分析

電子探針分析是一種最適用於測定微小礦物和包裹體成分的定性、定量以及稀有元素、貴金屬元素賦存狀態的方法。其測定元素的范圍由從原子序數為5的硼直到92的鈾。儀器主要由探針、自動記錄系統及真空泵等部分組成,探針部分相當於一個X射線管,即由陰極發出來的高達35~50kV的高速電子流經電磁透鏡聚焦成極細小(最小可達0.3μm)的電子束———探針,直接打到作為陽極的樣品上,此時,由樣品內所含元素發生的初級X射線(包括連續譜和特徵譜),經衍射晶體分光後,由多道記數管同時測定若干元素的特徵X射線的強度,並用內標法或外標法計算出元素含量。

(六)紅外吸收光譜

簡稱紅外光譜,是在紅外線的照射下引起分子中振動能級(電偶極矩)的躍遷而產生的一種吸收光譜。由於被吸收的特徵頻率取決於組成物質的原子量、鍵力以及分子中原子分布的幾何特點,即取決於物質的化學組成及內部結構,因此每一種礦物都有自己的特徵吸收譜,包括譜帶位置、譜帶數目、帶寬及吸收強度等。

紅外吸收光譜分析樣品一般需要1.5mg,最常使用的制樣方法是壓片法,即把試樣與KBr一起研細,壓成小圓片,然後放在儀器內測試。

目前紅外吸收光譜分析在礦物學研究中已成為一種重要的手段。根據光譜中吸收峰的位置和形狀可以推斷未知礦物的結構,是X射線衍射分析的重要輔助方法,依照特徵峰的吸收強度來測定混入物中各組分的含量。此外,紅外光譜分析對考察礦物中水的存在形式、配陰離子團、類質同像混入物的細微變化和礦物相變等方面都是一種有效的手段。

Ⅵ 礦石檢測用什麼方法

礦石是指可從中提取有用組分或其本身具有某種可被利用的性能的礦物集合體。可分為金屬礦物、非金屬礦物。

礦石檢測的方法有:物相分析法、岩石全分析、粘土分析法、化學分析法、光薄片鑒定法、岩石鑒定等等。

Ⅶ 膨潤土檢測指標-含水量分析方法

膨潤土的礦石含水量可高達30%。冷卻乾燥後,水分含量會大大降低,但研磨後仍會含有一定量的水。如果乾燥過度脫水,其吸水性能的恢復過程將變得非常緩慢。因此,由該商品供應的膨潤土碾磨產品含有約8-12%的水。機械工業標准JB/T 9227-1999《鑄造用膨潤土和粘土》膨潤土的含水量不應超過12.0%,冬季不超過15.0%。該測試方法可根據GB/T2684-1981《鑄造用原砂及混合料試驗方法》進行。
1.烘乾法:將稱量瓶在105℃±3℃下烘乾至恆重並稱量,加入約10g膨潤土試樣,將稱量瓶和試樣再次稱量後在105℃±3℃烘箱中烘乾2h,去除在乾燥器中冷卻30min
W=(M3-M4)/(M3-M5)*100
W-水分質量分數%
M3-烘乾前稱量瓶和膨潤土試樣g
M4-烘乾後稱量瓶和膨潤土試樣g
M5-稱量瓶質量g
2.快速水分儀檢測法:將樣品放入樣品盤中稱量數值穩定後,關閉加熱筒,點擊開始測試,等待結果。一般需要3-5分鍾即可。

Ⅷ 實習四 粘土礦物及粘土岩的觀察與描述

一、實習的目

(1)掌握粘土岩的觀察和描述內容。

(2)認識粘土及粘土岩主要類型。

(3)學習和了解粘土礦物的幾種鑒定方法。

二、實習內容

鑒定和描述粘土和粘土岩;學習定名方法;學慣用染色法鑒定粘土礦物。

三、粘土和粘土岩的鑒定和描述

粘土和粘土岩的主要成分為粘土礦物,岩石顆粒很細,50%以上顆粒的粒度小於0.005 mm(<0.004 mm或>8φ)。根據以上特徵,從手標本和顯微鏡下鑒定粘土岩並不困難,但若准確鑒定粘土礦物成分還需採用一系列特殊的鑒定方法,如電子顯微鏡法、X射線法、薄膜油浸法、染色法、熱分析法。

1.標本鑒定和描述內容

(1)描述岩石的顏色

粘土岩的顏色是粘土礦物和混入成分以及沉積-後生作用階段的物理化學環境反映,描述時要分別描述原生色和次生色,命名時類似於碎屑岩,可用復合名稱。

(2)描述粘土岩的粒度結構

粘土岩的粒度結構是按粘土質點、粉砂和砂的相對含量來劃分的。一般可劃分五種類型(表2-1)。

表2-1 按粒度劃分粘土質點的結構類型

從泥質結構到砂泥質結構,含砂量增加,顆粒變粗,標本鑒定時可根據岩石粗細程度來區別。

(3)鑒定和描述粘土礦物成分和混入成分

粘土礦物由於細小很難肉眼鑒定,但根據物理性質可以初步鑒定單礦物粘土,常見的如具有遇水體積膨脹性質的為蒙脫石(膠嶺石);具有強吸水性而表面粘舌頭的為高嶺石;具有鱗片狀並呈現絲絹光澤者為水雲母,綠—橄欖綠色粒狀為海綠石等。

混入物成分可根據其顏色和物理性質區別,常見混入物有:硅質者為緻密、堅硬;鈣質者加稀鹽酸起泡;鐵質者為紅色或褐色;含有機質者為黑色不染手;含炭質者為黑色易染手。

(4)描述粘土礦物集合體形態結構

粘土礦物集合體形態有4種結構:

膠狀結構 岩石由凝膠老化形成,可見脫水裂隙和貝殼紋,以及球顆。

豆狀結構 岩石中有大於2 mm的豆粒,由粘土礦物組成,一般無同心圓結構。

鮞狀結構 由粘土礦物組成的顆粒,小於2 mm,且具同心圓結構,其成分可混有鐵質和有機質等。

碎屑結構 未固結的粘土,破碎後又被粘土膠結。

(5)描述粘土岩的構造

粘土岩常見構造為水平層理構造、層面構造和沿水平層理裂開的頁理構造。具頁理構造的粘土岩稱頁岩。不具上述構造的為塊狀構造岩石,稱泥岩。

(6)描述所含生物化石的種類和特徵

(7)定名

按固結程度和頁理發育程度定名為基本名稱,其他成分按少前多後的原則補充命名。名稱包括:岩石顏色+粒度結構+混入物成分+粘土成分+固結程度名稱。對某一岩石不一定各方面均具備,如紫紅色砂質泥岩。

2.薄片鑒定和描述

在標本鑒定的基礎上詳細鑒定成分、顯微結構和構造。

(1)鑒定岩石的礦物成分

主要由粘土礦物組成,常見粘土礦物有高嶺石、蒙脫石(膠嶺石)、水雲母、海綠石等,主要根據光學性質進行鑒定。

高嶺石 無色透明,有時具淡粉色,細小鱗片狀晶體,集合體呈蠕蟲狀、書頁狀或放射狀,呈正低突起,干涉色為一級灰白,解理呈近平行消光。

蒙脫石(膠嶺石)無色透明,有時呈淡粉紅色,細小鱗片狀,為負低突起,干涉色一級末至二級初,為低突起。

水雲母 無色透明,有時為淡綠色或淡褐色,正低突起,雙折射率較高,最高幹涉色可達二級末,呈細小鱗片狀集合體,片狀集合體也可呈蠕蟲狀晶體,近平行消光。與白雲母區別在於光軸角較小,與高嶺石區別在於雙折射率較強,與蒙脫石區別在於為正低突起。

海綠石 綠色、淺綠、黃綠或橄欖綠色,為單晶時可見黃綠—綠的多色性,但多為細小晶粒集合體,多色性不明顯,並呈集合偏光現象(即在正交偏光鏡下轉動物台時,切面始終明亮)。正中—低突起,最高幹涉色為二級,多因本身顏色影響,而仍呈綠色。呈圓狀、腎狀。

除粘土礦物外還應鑒定和描述混入的砂和粉砂的成分和含量,以及其他混入物的成分和含量。

(2)鑒定岩石結構特徵

根據結晶程度分為4級:

非晶質結構 不顯光性,如水鋁英石質岩石。

隱晶質結構 可見微顯光性。

顯晶質結構 可見細小粒狀、鱗片狀、纖狀結構。

粗晶結構 經重結晶後形成較大晶體,如高嶺石重結晶成蠕蟲狀晶體。

(3)粘土礦物的觀察

觀察粘土礦物集合體形狀的內部構造和物質組成,如鮞狀、豆狀的同心圓有無和層數多少及組成成分等。

(4)觀察和描述顯微構造

鱗片構造 細小鱗片狀粘土礦物無方向性排列。

氈狀構造 由細長纖維狀粘土礦物交織而成。正交偏光下,呈交錯消光。

定向構造 片狀粘土礦物交織排列呈格子狀,因此可見格子狀消光。

(5)定名

定名時按手標本要求,另外可適當加上特徵的結構構造。

四、染色法鑒定粘土礦物

由於粘土礦物具有吸附性(或吸收性),但是各種粘土礦物對不同的有機色劑吸附能力是不同的,而且某些礦物吸附色劑後並可使溶液變色,因此,可應用有機色劑對粘土礦物的染色現象來鑒定粘土礦物,這種方法稱染色法。染色法鑒定粘土與其他方法比較起來最簡便,而且成本低,對單礦物粘土鑒定比較准確。

染色法操作步驟如下:

1.有機色劑的配製

常用的有機色劑有亞甲基藍、鹽酸聯苯銨的飽和溶液。其配製方法如下:

(1)亞甲基藍溶液(簡稱MГ):將10 mg亞甲基藍溶於1000 mL的蒸餾水中,即成為0.001%濃度的亞甲基藍的淡藍色溶液。

(2)鹽酸聯苯銨的飽和溶液(簡稱Б):將0.5 g鹽酸聯苯銨溶於500 mL蒸餾水中,可加熱50℃使之溶解,待冷卻後濾出呈無色溶液。

(3)二氨基偶氮苯溶液(簡稱c),也稱桔橙:將100 mg二氨基偶氮苯溶於1000 mL蒸餾水中,即得橙色二氨基偶氮苯溶液。

(4)飽和KCl溶液。

2.制備粘土懸浮液

取樣品約0.5 g,在玻璃缽中用水微浸透並調成糊狀,研磨數分鍾,使顆粒充分分散開,移至大燒杯中,加水稀釋,攪動使成懸浮液,靜置待用。

3.染色

(1)用吸管吸取粘土懸浮液於4個試管中,每個試管中放入10 mL。

(2)在1和2試管中加入等量的亞甲基藍溶液,再在2試管中加兩滴飽和KCl溶液,在3試管中加入等量鹽酸聯苯銨溶液,在4試管中加入等量的二氨基偶氮苯溶液,然後搖勻,靜置一晝夜(或更長)。

(3)觀察和記錄染色結果:首先觀察和記錄沉澱物的著色情況、所呈顏色和鮮明純凈程度,顏色鮮純凈者為單礦物粘土,顏色灰暗混雜者為多雜質粘土。還要注意顏色是否均一。其次觀察和記錄沉澱物特徵,重點觀察加亞甲基藍的兩個試管中沉澱物是呈緻密狀或呈凝膠狀。再次觀察懸浮液的透明度。

4.粘土礦物染色結果的解釋

主要是根據染色結果對照已知礦物染色鑒定表,查證未知礦物的成分(表2-2)。

表2-2 粘土礦物和某些泥級非粘土礦物著色結果

五、實習報告

選1~2塊標本進行岩石的鑒定並提交鑒定報告。鑒定報告一定要文字清楚,簡明扼要,定名准確。

復習題

(1)在手標本上如何區分粉砂岩和泥質岩類?

(2)常見的粘土礦物有哪幾種類型?試述粘土礦物的晶體構造特點。

(3)試述伊利石粘土岩、高嶺石粘土岩、蒙脫石粘土岩的一般特徵及成因。

Ⅸ 不同灌區土壤理化參數相關分析

粘土礦物是含水硅酸鹽化合物,粘土礦物具有比表面積大、孔隙多以及極性強等特徵,特殊的晶體結構賦予粘土礦物許多特性,如較強的吸附性、可塑性能和離子交換性能等(王發剛等,2008)。粘粒含量為顆粒分析時粒度小於0.005mm土顆粒的百分含量。一般而言,粘土含量高的介質對應的粘粒含量也多。有機碳是土壤有機質中主要的成分,是反硝化作用中不可或缺的碳源,其含量的大小(TOC)對硝態氮的去除效果起決定性作用,一般認為C/N大於2.06時,反硝化強烈(喬照華,2008)。不同粘土礦物對有機碳的保護作用不同;不同質地土壤因持水性能和所含粘粒比例不同也會影響土壤有機碳的分布(中國林業科學研究院林業研究所森林土壤研究室,1999)。土壤中的顆粒越細,與之相結合的土壤有機碳就越多(陳忠等,1998),因為粘粒具有很大的比表面積和電荷密度等特性,能夠較強地吸附土壤中的有機質,並能與腐殖質形成粘粒-腐殖質復合體防止有機物遭受分解(Tiessenetal.,1983);另一方面,粘粒含量多的土壤孔隙細小,而且往往被水占據,通氣不暢,好氣性微生物活動受到抑制,有機質分解緩慢,因而容易積累;粘粒還能吸附對土壤有機質有分解力的酶,對土壤有機質有物理保護作用(劉樹林等,2008)。所以,土壤顆粒越細,土壤中的有機碳含量相對越多,致使土壤對硝態氮的生物作用越強,對硝態氮的去除率越大。

CEC是指土壤膠體所吸附的各種陽離子的總量,是土壤的基本特性和重要肥力影響因素之一(湯艷傑等,2002),它直接反映土壤保蓄、供應和緩沖陽離子養分(K+、NH+4等)的能力,同時影響多種其他土壤理化性質,因此,CEC常被作為土壤資源質量的評價指標和土壤施肥、改良等的重要依據。土壤礦質顆粒對CEC的貢獻主要來自粘粒部分,粘粒部分越多,CEC越高(Jobbagyetal.,2000),這主要是因為沉積物吸附能力與沉積物顆粒大小有著直接的關系。本次研究區域污灌區和再生水灌區中粉質粘土的CEC值均大於細砂和礫石含砂的值正是這一特性的反映。

由以上分析可知,粘土礦物含量大、粘粒含量多的土壤介質有3個特點:①CEC值較大,使得該介質對氨氮的吸附作用較強;②受保護的有機碳較多,使得該介質對氮的生物作用較強;③由於介質顆粒小,有效孔隙度小,污染物在該介質中運移速度較慢,能與介質得到充分的接觸,使得介質「活性過濾器」的作用更充分的發揮。

此外,通過SPSS統計分析軟體做簡單的散點圖證明:土壤理化指標之間具有線性相關性,因此採用Bivariate二變數相關分析方法分析污灌區、再生水灌區、清灌區3個灌區主要土壤理化指標之間的相關關系,根據目前研究成果,選取含水率、TOC、CEC、粘粒含量、粘土礦物含量五個理化指標分析它們之間的兩兩相關關系。計算相關系數的方法選用Pearson法。Pearson法適用於選擇進行積差相關分析(積差相關系數是按積差方法計算,同樣以兩變數與各自平均值的離差為基礎,通過兩個離差相乘來反映兩變數之間相關程度),即最常用的相關分析,其是計算連續變數或等間隔測度變數間的相關系數。計算該相關系數時,不僅要求兩相關變數均為正態變數,而且樣本數(N)一般不應少於30。表3.7~表3.9即為3個灌區積差相關系數表。

表3.7 污灌區理化指標之間相關系數表

續表

*表示顯著水平α=0.05(雙側)時的相關系數。**表示顯著水平α=0.01(雙側)時的相關系數。這里的理化參數採用的是三剖面平均值。|R|<0.39為低度相關,|R|在0.39~0.70為中度相關,|R|>0.70為高度相關。

表3.8 再生水灌區理化指標之間相關系數表

*表示顯著水平α=0.05(雙側)時的相關系數。**表示顯著水平α=0.01(雙側)時的相關系數。這里的理化參數採用的是三剖面平均值。|R|<0.39為低度相關,|R|在0.39~0.70為中度相關,|R|>0.70為高度相關。

表3.9 清灌區理化指標之間相關系數表

續表

* 表示顯著水平 α = 0. 05 ( 雙側) 時的相關系數。**表示顯著水平 α = 0. 01 ( 雙側) 時的相關系數。這里的理化參數採用的是三剖面平均值。 | R | < 0. 39 為低度相關, | R | 在 0. 39 ~ 0. 70 為中度相關, | R | > 0. 70 為高度相關。

從表 3. 7 ~ 表 3. 9 可以看出,在顯著性水平 α = 0. 05,即置信區間為 95% 的條件下,含水率與 TOC、CEC、粘粒含量和粘土礦物含量之間基本為低相關; TOC 與 CEC、粘粒含量和粘土礦物含量之間基本為低相關; CEC 與粘粒含量和粘土礦物含量之間基本為高度相關; 粘粒含量和粘土礦物含量之間基本為高度相關。在顯著性水平 α =0. 01,即置信區間為 99%的條件下,CEC、粘粒含量和粘土礦物含量三者之間有高度相關性。

Ⅹ 粘土礦物分析

粘土礦物是細小分散含水層狀硅酸鹽和含水非晶質硅酸鹽礦物的總稱,其中高嶺石、蒙脫石、伊利石、綠泥石及間層礦物等是主要的敏感性礦物。由於存在較大的表面積和極強的活性(如吸附能力、對外來流體的敏感性等),粘土礦物對各種注入劑的注入能力、吸附及改性都有很大影響,粘土礦物是儲層損害的主要礦物。決定儲層敏感性傷害程度的主要因素是碎屑填隙物中粘土礦物的含量、組成、分布及產狀。

研究表明,粘土礦物的速敏性敏感程度序列為高嶺石>伊利石>伊/矇混層>綠泥石;水敏性敏感程度序列為蒙脫石>伊/矇混層>伊利石>高嶺石>綠泥石;酸敏性敏感程度序列為綠泥石>高嶺石。

(一)粘土礦物含量

根據文13塊3口井樣品的X射線衍射分析資料,得到粘土礦物相對含量數據表(表2-1-2)。

表2-1-2 粘土礦物相對含量數據表

粘土礦物相對含量隨埋深變化關系見圖2-1-2,文東油田沙三中儲層粘土礦物以伊利石為主,綠泥石次之,伊/矇混層含量高於高嶺石含量。

(二)粘土礦物產狀

根據掃描電鏡資料,文東油田沙三中油藏粘土礦物產狀可歸納為三類。

1.分散狀

粘土礦物在孔隙中以分散的形式附著在砂粒表面或成為橋形「支架」。分散狀又可分為質點式、孔內少量堆積式、橋式。這三種形式對孔隙的大小,滲透率及潤濕性影響都不大。注水後分散狀粘土礦物往往會被水帶走,或在其他地方重新堆積。如文13-423井30#樣品石英錶面溶蝕坑內針葉狀綠泥石,54#樣品粒間片狀伊/矇混層及針葉狀綠泥石,57#樣品粒間片狀伊利石;文13-600井137#樣品孔隙中少量伊/矇混層。

圖2-1-2 粘土礦物相對含量隨埋深變化關系

◆伊利石含量/%;■高嶺石含量/%t▲綠泥石含量/%;●伊/矇混層含量/%;*混層比/%

2.薄膜狀

粘土礦物在孔隙中呈薄膜形式基本連續覆蓋在岩石顆粒表面,形成粘土膜,這些粘土中含有大量微孔隙。薄膜狀粘土礦物對油層滲透率有一定影響,對油層潤濕性影響很大。如文13-423井4#樣品粒表葉片狀綠泥石,30#樣品粒表絲狀伊/矇混層,30#樣品粒表片狀綠/矇混層,62#樣品粒表蜂窩狀伊/矇混層及綠泥石、伊利石,159#樣品粒表絲狀伊利石;文13-600井122#樣品粒表片狀伊利石。

3.橋塞狀

粘土礦物不僅大面積覆蓋孔隙表面,而且向孔隙中心延伸,甚至橫跨整個孔隙和喉道。粘土礦物使大孔隙變成許多微小孔隙和曲折的流體通道,束縛大量流體。橋塞狀粘土礦物使岩石滲透率明顯下降。如文13-423井4#樣品溶蝕坑內絲狀伊利石充填;文13-600井22#樣品充填孔隙的伊利石,60#樣品片狀伊利石堵塞粒間縫。

閱讀全文

與分析粘土礦物水含量的方法相關的資料

熱點內容
綠蘿生蟲子怎麼辦最快的方法 瀏覽:512
女性最佳取環方法 瀏覽:361
手機信號最強的方法 瀏覽:800
圖片粘貼排版方法視頻 瀏覽:371
抗疫和防疫的方法和技巧手抄報 瀏覽:73
小學生如何能快速答卷的方法 瀏覽:74
當體溫升高時常用哪些方法降溫 瀏覽:38
車窗拋物方法視頻教程 瀏覽:604
鹽水去頭屑的最佳方法 瀏覽:227
冬季開花花卉怎麼養正確方法圖文 瀏覽:957
如何製作腐植酸的方法 瀏覽:47
體育信息的研究方法 瀏覽:320
口袋最簡單的方法怎麼折呢 瀏覽:18
壓力表的常見問題和解決方法 瀏覽:153
腎上腺素的釋放水平檢測方法 瀏覽:281
儀表總耗氣量的計算方法有哪些 瀏覽:923
每天百分比計算方法 瀏覽:178
98乘以99分之8的簡便方法 瀏覽:492
如何求零點解決方法 瀏覽:416
購買佛壁的正確方法圖解 瀏覽:478