❶ 常見的多糖有哪些 他們的提取方法比較
多糖的廣義分類分為: 均一性多糖和不均一性多糖。
均一性多糖:
由一種單糖分子縮合而成的多糖,叫做均一性多糖。自然界中最豐富的均一性多糖是澱粉和糖原、纖維素。它們都是由葡萄糖組成。澱粉和糖原分別是植物和動物中葡萄糖的貯存形式,纖維素是植物細胞主要的結構組分。
1、 澱粉 澱粉是植物營養物質的一種貯存形式,也是植物性食物中重要的營養成分,分為直鏈澱粉和支鏈澱粉。① 直鏈澱粉:許多α-葡萄糖以α(1-4)糖苷鍵依次相連成長而不分開的葡萄糖多聚物。典型情況下由數千個葡萄糖線基組成,分子量從150000到600000。結構:長而緊密的螺旋管形。這種緊實的結構是與其貯藏功能相適應的。遇碘顯蘭色。② 支鏈澱粉:在直鏈的基礎上每隔20-25個葡萄糖殘基就形成一個-(1-6)支鏈。不能形成螺旋管,遇碘顯紫色。澱粉酶:內切澱粉酶(α-澱粉酶)水解α-1.4鍵,外切澱粉酶(β-澱粉酶)α-1.4,脫支酶α-1.6。 2、 糖元 與支鏈澱粉類似,只是分支程度更高,每隔4個葡萄糖殘基便有一個分支。結構更緊密,更適應其貯藏功能,這是動物將其作為能量貯藏形式的一個重要原因,另一個原因是它含有大量的非原性端,可以被迅速動員水解。糖元遇碘顯紅褐色。
3、 纖維素結構 許多β-D-葡萄糖分子以β-(1-4)糖苷鍵相連而成直鏈。纖維素是植物細胞壁的主要結構成份,占植物體總重量的1/3左右,也是自然界最豐富的有機物,地球上每年約生產1011噸纖維素。經濟價值:木材、紙張、纖維、棉花、亞麻。完整的細胞壁是以纖維素為主,並粘連有半纖維素、果膠和木質素。約40條纖維素鏈相互間以氫鍵相連成纖維細絲,無數纖維細絲構成細胞壁完整的纖維骨架。降解纖維素的纖維素主要存在於微生物中,一些反芻動物可以利用其消化道內的微生物消化纖維素,產生的葡萄糖供自身和微生物共同利用。雖大多數的動物(包括人)不能消化纖維素,但是含有纖維素的食物對於健康是必需的和有益的。
4、 幾丁質(殼多糖) N-乙醯-D-葡萄糖胺以(1,4)糖苷鏈相連成的直鏈。
5、菊 糖 :多聚果糖,存在於菊科植物根部。
6、 瓊 脂 :多聚半乳糖,是某些海藻所含的多糖,人和微生物不能消化瓊脂。
不均一性多糖
有不同的單糖分子縮合而成的多糖,叫做不均一多糖。常見的有:透明質酸、硫酸軟骨素等。
有一些不均一性多糖由含糖胺的重復雙糖系列組成,稱為糖胺聚糖(glyeosaminoglycans,GAGs),又稱粘多糖。(mucopoly saceharides)、氨基多糖等。糖胺聚糖是蛋白聚糖的主要組分,按重復雙糖單位的不同,糖胺聚糖有五類:
1、透明質酸
2、硫酸軟骨素
3、硫酸皮膚素
4、硫酸用層酸
5、肝素
6、硫酸乙醯肝素
植物活性多糖的提取方法有多種,在水提醇沉的基礎上,常採用酶解、微波、超聲波,膜處理和CO<2>超臨界萃取等方法進行輔助提取或精製.最常用的還是水提醇沉法.
舉例: 蒽酮比色法,具體步驟
一、儀器、試劑和材料
1.儀器:電子天平,超聲波清洗器,電熱恆溫水浴鍋,抽濾設備,分光光度計,容量瓶,刻度吸管等
2.試劑:
(1)葡萄糖標准液:l00 µg/mL
(2)濃硫酸
(3)蒽酮試劑:0.2 g蒽酮溶於100 mL濃 H2SO4中。當日配製使用。
3.材料:甜高粱,甘草
二.操作步驟
1.葡萄糖標准曲線的製作
取7支大試管,按下表數據配製一系列不同濃度的葡萄糖溶液:
管號
1
2
3
4
5
6
7
葡萄糖標准液(mL)
0
0.1
0.2
0.3
0.4
0.6
0.8
蒸餾水(mL)
1
0.9
0.8
0.7
0.6
0.4
0.2
葡萄糖含量(µg)
0
10
20
30
40
60
80
在每支試管中立即加入蒽酮試劑4.0mL,迅速浸於冰水浴中冷卻,各管加完後一起浸於沸水浴中,管口加蓋,以防蒸發。自水浴沸騰起計時,准確煮沸l0 min,取出,用冰浴冷卻至室溫,在620 nm波長下以第一管為空白,迅速測其餘各管吸光值。以標准葡萄糖含量(µg)為橫坐標,以吸光值為縱坐標,繪出標准曲線。
2.植物樣品中可溶性糖的提取:將樣品粉碎,105 ºC烘乾至恆重,精確稱取1~5 g,置於50mL三角瓶中,加沸水25mL,加蓋,超聲提取10 min,冷卻後過濾(抽濾),殘渣用沸蒸餾水反復洗滌並過濾(抽濾),濾液收集在50mL容量瓶中,定容至刻度,得可溶性糖的提取液。
3.稀釋:吸取提取液2mL,置於另一50mL容量瓶中,以蒸餾水定容,搖勻。
4.測定:吸取1 mL已稀釋的提取液於試管中,加入4.0 mL蒽酮試劑,平行三份;空白管以等量蒸餾水替代提取液。以下操作同標准曲線製作。根據A620平均值在標准曲線上查出葡萄糖的含量(µg)。
三、結果處理:
C × V總 × D
樣品含糖量(%)= ————————————— × 100%
W × V測 × 106
其中:C——在標准曲線上查出的糖含量(µg),
V總——提取液總體積(mL),
V測——測定時取用體積(mL),
D——稀釋倍數,
W——樣品重量(g),
106——樣品重量單位由g換算成µg的倍數
溶劑提取法
溶劑提取法是從植物中提取多糖的常用方法,溶劑提取法首先要考慮的因素是選擇溶劑,一般應遵循相似相溶的原則,即極性強的有效成分選擇極性強的溶劑,極性弱的成分選擇極性弱的溶劑。多糖是極性大分子化合物,應選擇水、醇等極性強的溶劑。在所有溶劑中,水是典型的強極性溶劑,對植物組織的穿透力
強,提取效率高,在生產上使用安全。它能用於各種植物多糖,被廣泛應用。用水作溶劑來提取多糖時,可以用熱水浸煮提取,也可以用冷水浸提。水提取的多糖大多是中性多糖。一般植物多糖提取多數採用熱水浸提法,該法所得多糖提液可直接或離心除去不溶物;或者利用多糖不溶於高濃度乙醇的性質,用高濃度乙醇沉澱提純多糖;但由於不同性質或不同相對分子質量的多糖沉澱所需乙醇濃度不同,它也可以用於樣品中不同多糖組分的分級分離;還可按多糖不同性質在粗分階段利用混合溶劑提取法對植物中不同的多糖進行分離;其中,以乙醇沉澱最為普遍。劉青梅等在紫菜粗多糖提取方式研
究中,熱水提取控制條件為:溫度為20~100℃,水與紫
菜的液固質量比為50:1,提取時間30~180min,經多次
試驗最終得率為2.05%。周峙苗得到熱水浸提羊棲菜
多糖的最佳因素:浸提溫度為煮沸(102℃),pH為3.0,
浸提時間為3h,液固質量比為40:1。李戰對三種紫球
藻的提取工藝研究表明,三種紫球藻的最佳提取工藝
各不相同。銅綠紫球藻的最優提取工藝為乙醇濃度
5%,乙醇用量為3倍體積,醇沉時間為1.5h。氯仿與正
丁醇的比例4:1,樣液與Sevag試劑的比例1:2,作用時
間為15min。淡色紫球藻的最優提取工藝為乙醇濃度
75%,乙醇用量為2倍體積,醇沉時間為1h,氯仿與正
丁醇的比例3:1,樣液與Sevag試劑的比例1:2,作用時
間為45min。血色紫球藻的最優提取工藝為乙醇濃度
50%。乙醇用量為1倍體積,醇沉時間為0.5h,氯仿與
正丁醇的比例4:1,樣液與Sevag試劑的比例2:1,作用
時間為45min。
酸鹼提取法
有些多糖適合用稀酸或鹼溶液提取,才能得到更
高的提取率。但酸鹼提取法有其特殊性,因多糖類的不
同而異。只在一些特定的植物多糖提取中佔有優勢,而
且即使有優勢,在操作上還應嚴格控制酸鹼度。因為
某些多糖在酸性或者鹼性較強時,可能引起多糖中糖
苷鍵的斷裂。另外,稀酸、稀鹼提取液應迅速中和或迅
速透析,濃縮與醇析而獲得多糖沉澱。趙宇等對海篙
子多糖的提取方法研究發現,從硫酸根含量及粗多糖
產率看酸提方法好於水提方法。具體方法為:100g海
篙子乾粉,加入1000ml 0.1mo1/L HCL溶液提取。室溫
攪拌1h後過濾,重復操作三遍,合並濾液;濾液減壓濃
縮至總體積的1/5,再加入95%乙醇至乙醇濃度達
30%,沉澱,離心除去沉澱中的褐藻酸,繼續向上清液
中加入乙醇至乙醇濃度達7%。室溫放置過夜使沉澱
完全,離心,沉澱乾燥得海篙子粗多糖,多次試驗算得
平均產率為3.35%。
孟憲元等在茜草多糖提取研究中發現酸提相對
多於水提,以稀酸提取茜草多糖,產品純度較高。具體
方法如下茜草根粗粉1000g 5%HCL浸泡、離心、取上
清液加入ETOH並調節至濃度為7%,靜置,2500rpm
離心,收集棕色沉澱物,95%ETOH洗滌3次,用45%
HCL溶解。加1%活性炭脫色,真空抽濾,濾液4℃過
夜,棄去容器底部少許沉澱物。溶液置透析袋內,逆水
法透析3d,冷凍乾燥,得白色粉末狀多糖約10g。
Hayashi Katsuhiko發明了一種從綠色藻類中提取酸
性多糖的方法,而這種多糖用常規的熱水法是無法得到的。具體過程為:將乾燥的綠藻粉末製成懸浮液,熱
水浸泡提取或將含水綠藻直接用熱水提取後離心分
離,取粘稠的固狀物,加入鹼水,在pH≥10的條件下
再進行攪拌提取,鹼水提取液在攪拌的同時加入酸水
調節pH值為3.0~4.0,靜置沉降後離心得酸性多糖。
1.3生物酶提取法
酶技術是近年來廣泛應用到有效成份提取中的一
項生物技術,在多糖的提取過程中,使用酶可降低提取
條件,在比較溫和的條件中分解植物組織,加速多糖的
釋放或提取。此外,使用酶還可分解提取液中澱粉、果
膠、蛋白質等的產物,常用的酶有蛋白酶,纖維素酶,果
膠酶等。孟江研究不同酶對大棗渣多搪提取效果的
影響,根據多糖得率、多糖含量及蛋白質含量進行綜合
評分得到最適合的酶為復合酶2(先胰蛋白酶提取,後
木瓜蛋白酶提取),接下來依次是木瓜蛋白酶、復合酶、
(木瓜蛋白酶+胰蛋白酶)、胰蛋白酶、胃蛋白酶
(pH=7.0)、胃蛋白酶(pH=2.0)。復合酶2作用條件溫
和,多糖得率及含量較高,且蛋白含量較低,實為一種
理想的酶提取劑。通過進一步正交實驗考察得出最佳
工藝:先用胰蛋白酶3%,40倍體積在pH=7.0,65℃溫
浸1.5h後,再加木瓜蛋白酶2.5%,在pH=7.0,50℃水
溫浸1h,過濾殘渣加40倍體積水,迅速升溫至80℃,
然後溫浸1.5h。
此外,植物多糖的提取方法還有超濾法,超聲波強
化法,微波法等等。植物多糖的提取方法和技術在不斷
改進和創新,但對於同一種方法和技術又需在不同植
物多糖的提取中研究考察。在選取提取分離方法的同
時,應當根據目標多糖的特點、物理化學性質,綜合比
較,進行實驗,選取最佳方法和提取工藝。
❷ 多糖類的分析方法
下面將簡單介紹化學方法和物理分析方法。⑴化學方法測定多糖結構還是目前最常用的方法,測定的手段很多,其中經典而有效的是甲基化分析、高碘酸氧化和Smith降解、部分酸水解以及乙醯解和甲醇解等。① 乙醯解:多糖的乙醯解反應是在由乙酸酐、乙酸和硫酸組成的混合液中加熱進行的,在一定的糖苷鍵處裂解。研究表明,相同糖苷鍵在酸水解和乙醯解中的速度是不同的。乙醯解是酸水解的一種有用的補充,多糖可從這兩種不同的方法中獲得不同的片段,從不同的角度獲得多糖的結構信息。甲醇解:多糖在80-100℃條件下與無水甲醇氯化氫反應能將多糖變成組成單糖的甲基糖苷,這些甲基糖苷能轉化為三甲基硅醚衍生物或乙醯基衍生物,然後進行GC分析並與標准單糖對照,可得到組成多糖的各單糖的定量數據。⑵物理分析法 ①IR法:IR在多糖結構分析上主要是確定吡喃糖的苷鍵構型,以及常規觀察其他官能團。一般主要觀察730-960cm-1的范圍,如對於α-吡喃糖,δC1-H在 845 cm-1,而β-吡喃糖,δC1-H在890cm-1有最大吸收峰。②MS、GC-MS:GC分析多糖雖受樣品揮發性和熱穩定性的限制,但GC-MS是多糖結構分析不可缺少的工具,特別是對水解單糖、甲基化單糖及甲基化寡糖的分析,而且能鑒別出糖的異構體。MS在多糖結構分析中不僅在鑒別各種甲基衍生物的碎片,確定各種單糖殘基的連接位置時必不可少,而且由於FAB-MS、ESI-MS和 MALDI-MS等技術的出現,利用質譜還可以測定多糖的分子量及一級結構。③NMR:用NMR技術研究多糖結構的一個特點是不破壞樣品,對多糖的結構特徵可通過化學位移、偶合常數、積分面積、NOE及馳豫時間等參數來表達。一維、二維圖譜 NMR在分析糖的構型、相互連接的位置及順序等方面具有廣闊的應用前景。2、分子量及分子量分布多糖具有分子大小不均一的特點,近年來發現這些生物大分子的某一分子量范圍成分具有葯理活性,而另一分子量范圍的成分不具有葯理活性或具有一定的毒副作用,因此分子量及其分布既是這類葯物的有效性控制的指標又是安全性控制的指標,質量標准中制訂該項檢查十分必要,這也是近年來大分子聚合物葯物質量標准發展的一個明顯的特點。多糖分子量只是代表相似鏈長的平均配布,不同方法所測得的分子量不同,即使是同一多糖,其重均分子量與數均分子量也相差較大,通常採用凝膠色譜法控制這類葯物的分子量及其分布,應經研究選用與供試品分子大小相適應的色譜柱填充劑;使用的流動相通常為水或緩沖液,其pH值不應超過填充劑的耐受范圍,可加入適量的有機溶劑,但濃度不應超過30%,流速以 0.5-1.0ml/min為宜,因這類分子多無紫外吸收,一般採用示差折光檢測器,選用對照品的分子量范圍及顆粒形狀應與供試品匹配,測定數據經適宜的GPC軟體處理求得相關參數。3、含量測定一般來講,多糖不含蛋白和氨基酸,蛋白或氨基酸檢測應呈陰性或符合限度檢查要求,如為糖蛋白或糖肽,應提供其證據,以保證產品不是多糖與蛋白的混合物;並提供其氨基酸構成及蛋白含量范圍,以保證質量穩定可控。對從天然植物中得到的多糖,在結構研究中尤其對糖組成分析,確定其中是否含有糖醛酸殘基具有很重要的意義。糖醛酸的含量測定目前較常用的是硫酸咔唑法,但容易受中性糖殘基的干擾。為了消除測定的干擾,可先測定樣品中中性糖的吸收度,然後從樣品的吸收度減去中性糖的吸收度,即為樣品中糖醛酸的吸收度值。間羥基聯苯法也是一種常用的多糖中糖醛酸含量測定方法,該法較硫酸咔唑法受中性糖殘基的干擾更小。多糖的含量測定可分為兩大類:一類是直接測定多糖本身,如高效液相色譜法和酶法;另一類是利用組成多糖的單糖縮合反應而建立的方法,如苯酚-硫酸法、蒽酮-硫酸法等。前者需要多糖的純品和特定的酶,後者測定時方法學干擾較大,現有的比色重現性差,受影響因素多。但由於目前國內的實驗條件,多糖的含量仍然主要採用這種方法,其原理為:多糖在濃硫酸水合產生的高溫下迅速水解,產生單糖,單糖在強酸條件下與苯酚反應生成橙色衍生物。在波長490nm左右處和一定濃度范圍內,該衍生物的吸收值與單糖濃度呈線性關系,從而可用比色法測定其含量,所用的單糖對照品盡量採用與其多糖組成一致或為含量較高的單糖,這樣測得的值較准確。需要強調的是,這種方法所測定的是總糖的含量而不是總多糖的含量,因此首先應測定樣品中游離的單糖含量,然後將總糖的含量減去游離單糖的含量,即為總多糖的含量。另外還可以採用3,5-二硝基水楊酸比色法(DNS法),它是在鹼性條件下顯色,較准確測定還原糖與總糖的含量從而求出多糖的含量,可消除還原性雜質的干擾。
❸ 百分求助:一道生物化學題:根據生物化學結構與功能的統一性原則,闡述多糖的研究前景
第一個問題——就是解結構。因為結構決定功能,目前尤其是著名的學術刊物在刊發新物質相關文章時幾乎都要求附帶其分子結構的信息。多糖與蛋白或核酸這樣的大分子相比,一個特別特殊的問題就是人們對其單體連接方式的好奇心絕不亞於對其整體分子構象的,主要可以說是因為單體連接方式對多糖的功能體現更有決定意義。而糖的分子含多羥基,要充分辨別其結構很困難,特別是研究分枝型的多糖更加復雜,通常需要多種分離分析方法同時使用。研究主要包括:(1)相對分子質量;(2)單糖組成、比例;(3)有無糖醛酸及具體的糖醛酸類型和比例;(4)各單糖殘基的D或L構型,吡喃環或呋喃環形式;(5)各個單糖殘基之間的連接順序;(6)糖苷的異頭異構形式;(7)每個糖殘基上羥基被取代情況;(8)糖鏈和非糖部分連接情況;(9)主鏈和支鏈連接位點;(10)糖殘基可能連接其他基團等。一般,研究結構主要集中在兩難點,一是單體連接的鍵型(比如Alpha-1,4-苷鍵還是Alpha-1,6-苷鍵),一是單體的分子構象(如椅式還是半椅式),這對多糖是否有其本體活性至關重要。所以開發和應用分子結構研究方法一直很重要。
多糖衍生物的研究也很有前景——改性天然多糖分子,獲得更高效的生物功能或去除其原有不利因素。
第二個問題——多糖的活性和活性作用機理。目前比較確定的多糖可能具有的活性有免疫調節,抗腫瘤,抗病毒,抗氧化,降血糖、血壓和血脂。至於其他一些比如美容肌膚、抗輻射等存在一些爭議。並且現在能夠比較全面了解某種多糖如何發揮活性作用的機制的也為數不多,需要大量基礎研究。
應用方面:
工業應用——主要是裂解多糖進行工業化應用的研究方向。比如生物乙醇、低聚糖等的生產需要從成分復雜的原料開始,產物也一般是成分復雜的混合體。故要求更先進的結構分析、分離分析技術。
材料領域——跨度非常大,比如單單是羧甲基纖維素CMC就能在食品、醫葯甚至建築各行各業中廣泛應用。但一般是經過分子改性的,且必須要能規模化生成,這也是很廣闊的研究方向。
食品醫療保健——1、資源利用,包括發現具有理想性能的天然多糖、改性天然多糖並實際應用;2、結構解析,沒有結構和要求的安全性試驗拿不到葯號。
❹ 結構中含有甘露糖醛酸的多糖有哪些
質量研究一般來講,多糖的質量研究主要包括各組分的理化性質如溶解度、比旋度和粘度的測定,分子量及分子量分布的研究,平面和立體的化學結構分析,結構改造和結構修飾的研究,以及糖醛酸、蛋白質、單糖和多糖的含量測定等等。下面簡單介紹多糖的結構、分子量及分子量分布以及含量測定等方面的研究進展。 1、結構分析目前在多糖一級結構的分析中大多採用化學方法與物理方法相結合,可基本闡明某一多糖的一級結構的大致特徵。而目前用於多糖高級結構分析的方法主要是物理方法, 諸如 X-射線纖維衍射、核磁共振、電子衍射等。如上所述,多糖的一級結構本身就很復雜。由於多糖結構的微觀不均一性, 或結構鍵中有缺陷, 或是分子量分散, 使多糖的一級結構分析難以得出完全正確的結構式。多糖結構的描述包括:①多糖的分子量范圍;②多糖的單糖組分;③單糖的連接點類型;④單糖和糖苷鍵的構型;⑤重復單位。多糖的活性與其初級和高級結構密切相關,高級結構在活性方面比一級結構起更大作用。有些多糖一級結構相同, 但活性不同, 其原因是二級及三級結構不同。目前多糖的立體結構研究一般靠 2D-NMR及X-衍射法。除此之外, 多糖的活性還與分子量、溶解度、粘度等理化性質有關。在研究多糖的構效關系時, 常用到多糖的分子修飾, 對多糖進行化學修飾,如硫酸化、脫硫酸化、化學降解、酶降解、乙醯化、烷基化等等, 有助於深入探討其構效關系。下面將簡單介紹化學方法和物理分析方法。(1)化學方法測定多糖結構還是目前最常用的方法,測定的手段很多,其中經典而有效的是甲基化分析、高碘酸氧化和Smith降解、部分酸水解以及乙醯解和甲醇解等。 ①甲基化分析 甲基化分析是多糖也是寡糖結構分析的最有力的手段之一。它包括糖的所有自由羥基全部生成甲醚,接著通過水解釋放出甲基化單糖,再經NaBH4還原成糖醇,進而乙醯化水解後生成的羥基,得到各種部分甲基化的糖醇乙醯衍生物,生成的產物用氣相色譜進行定性和定量分析,可確定組成多糖的各單糖種類和比例,進而用氣相色譜—質譜,結合標准譜圖的分析,可得到各種部分甲基化單糖衍生物的歸屬,從而確定各單糖的連接位置,即糖苷鍵的位置。但甲基化分析還無法知道異頭碳糖苷鍵構型及多糖中單糖殘基的順序信息, 所要注意的是對含有糖醛酸或氨基己糖殘基的多糖比較難甲基化,而且有可能會產生二級產物,如糖醛酸殘基能產生縮酮衍生物,N—乙醯基氨基己糖殘基可產生N—甲基 -N-乙醯氨基己糖,對這些衍生物需要特殊分析技術才能鑒定。 ②過碘酸氧化及Smith降解 多糖的過碘酸氧化反應通常在pH3-5的水溶液中進行,用過碘酸鹽為氧化劑,因雙醛型的氧化產物在水中不穩定,因此需要在酸水解前用NaBH4將它們還原為醇,最後,通過水解產物的分析結果可獲得多糖中單糖連接的類型是l→4,1→-6,1→2,還是各種連接兼而有之。 Smith降解實際上是一種改良的過碘酸氧化,它是將多糖過碘酸鹽氧化,NaBH4還原後用弱酸部分水解 (通常在室溫下用稀無機酸水解還原產物),生成具有特徵性的糖連接的重復單元,從而獲得更多的結構信息。 ③部分酸水解這是多糖結構分析中一個很有用的技術,一是通過部分酸水解可以獲得結構較為容易測定的短鏈片段,從而集零為整推斷出多糖的結構。二是可以在特殊糖苷鍵處斷裂,幫助整個結構分析。如呋喃環結構的單糖對酸不穩定,用弱酸水解 (就可以得到這些殘基,再通過殘基片段的分析可得到有用的結構數據。一個成功的例子是枸杞子糖蛋白中一條由阿拉伯糖和半乳糖組成的O—連接多糖,並從甲基化分析結構得知,該多糖的非還原末端均為呋喃環阿拉伯糖,通過部分酸水解並用紙層析跟蹤檢測,首先釋放出Ara,到剛有Ga1釋放時終止水解,通過水解前後兩種多糖的甲基化分析結果比較,再結合其他方法測得的結果可推斷出整個多糖的可能結構。 ④乙醯解和甲醇解 乙醯解:多糖的乙醯解反應是在由乙酸酐、乙酸和硫酸組成的混合液中加熱進行的,在一定的糖苷鍵處裂解。研究表明,相同糖苷鍵在酸水解和乙醯解中的速度是不同的。乙醯解是酸水解的一種有用的補充,多糖可從這兩種不同的方法中獲得不同的片段,從不同的角度獲得多糖的結構信息。甲醇解:多糖在80-100℃條件下與無水甲醇氯化氫反應能將多糖變成組成單糖的甲基糖苷,這些甲基糖苷能轉化為三甲基硅醚衍生物或乙醯基衍生物,然後進行GC分析並與標准單糖對照,可得到組成多糖的各單糖的定量數據。(2)物理分析法 ①IR法:IR在多糖結構分析上主要是確定吡喃糖的苷鍵構型,以及常規觀察其他官能團。一般主要觀察730-960cm-1的范圍,如對於α-吡喃糖,δC1-H在 845 cm-1,而β-吡喃糖,δC1-H在890cm-1有最大吸收峰。 ②MS、GC-MS:GC分析多糖雖受樣品揮發性和熱穩定性的限制,但GC-MS是多糖結構分析不可缺少的工具,特別是對水解單糖、甲基化單糖及甲基化寡糖的分析,而且能鑒別出糖的異構體。MS在多糖結構分析中不僅在鑒別各種甲基衍生物的碎片,確定各種單糖殘基的連接位置時必不可少,而且由於FAB-MS、ESI-MS和 MALDI-MS等技術的出現,利用質譜還可以測定多糖的分子量及一級結構。 ③NMR:用NMR技術研究多糖結構的一個特點是不破壞樣品,對多糖的結構特徵可通過化學位移、偶合常數、積分面積、NOE及馳豫時間等參數來表達。一維、二維圖譜 NMR在分析糖的構型、相互連接的位置及順序等方面具有廣闊的應用前景。 2、分子量及分子量分布多糖具有分子大小不均一的特點,近年來發現這些生物大分子的某一分子量范圍成分具有葯理活性,而另一分子量范圍的成分不具有葯理活性或具有一定的毒副作用,因此分子量及其分布既是這類葯物的有效性控制的指標又是安全性控制的指標,質量標准中制訂該項檢查十分必要,這也是近年來大分子聚合物葯物質量標准發展的一個明顯的特點。多糖分子量只是代表相似鏈長的平均配布,不同方法所測得的分子量不同,即使是同一多糖,其重均分子量與數均分子量也相差較大,通常採用凝膠色譜法控制這類葯物的分子量及其分布,應經研究選用與供試品分子大小相適應的色譜柱填充劑;使用的流動相通常為水或緩沖液,其pH值不應超過填充劑的耐受范圍,可加入適量的有機溶劑,但濃度不應超過30%,流速以 0.5-1.0ml/min為宜,因這類分子多無紫外吸收,一般採用示差折光檢測器,選用對照品的分子量范圍及顆粒形狀應與供試品匹配,測定數據經適宜的GPC軟體處理求得相關參數。 3、含量測定一般來講,多糖不含蛋白和氨基酸,蛋白或氨基酸檢測應呈陰性或符合限度檢查要求,如為糖蛋白或糖肽,應提供其證據,以保證產品不是多糖與蛋白的混合物;並提供其氨基酸構成及蛋白含量范圍,以保證質量穩定可控。對從天然植物中得到的多糖, 在結構研究中尤其對糖組成分析, 確定其中是否含有糖醛酸殘基具有很重要的意義。糖醛酸的含量測定目前較常用的是硫酸咔唑法,但容易受中性糖殘基的干擾。為了消除測定的干擾,可先測定樣品中中性糖的吸收度,然後從樣品的吸收度減去中性糖的吸收度,即為樣品中糖醛酸的吸收度值。間羥基聯苯法也是一種常用的多糖中糖醛酸含量測定方法,該法較硫酸咔唑法受中性糖殘基的干擾更小。多糖的含量測定可分為兩大類: 一類是直接測定多糖本身, 如高效液相色譜法和酶法;另一類是利用組成多糖的單糖縮合反應而建立的方法,如苯酚-硫酸法、蒽酮-硫酸法等。前者需要多糖的純品和特定的酶,後者測定時方法學干擾較大,現有的比色重現性差,受影響因素多。但由於目前國內的實驗條件,多糖的含量仍然主要採用這種方法,其原理為:多糖在濃硫酸水合產生的高溫下迅速水解,產生單糖,單糖在強酸條件下與苯酚反應生成橙色衍生物。在波長490nm左右處和一定濃度范圍內,該衍生物的吸收值與單糖濃度呈線性關系,從而可用比色法測定其含量,所用的單糖對照品盡量採用與其多糖組成一致或為含量較高的單糖,這樣測得的值較准確。需要強調的是,這種方法所測定的是總糖的含量而不是總多糖的含量,因此首先應測定樣品中游離的單糖含量,然後將總糖的含量減去游離單糖的含量,即為總多糖的含量。另外還可以採用3,5-二硝基水楊酸比色法(DNS法),它是在鹼性條件下顯色,較准確測定還原糖與總糖的含量從而求出多糖的含量,可消除還原性雜質的干擾。
❺ 請教:多糖溶解度的測定
質量研究一般來講,多糖的質量研究主要包括各組分的理化性質如溶解度、比旋度和粘度的測定,分子量及分子量分布的研究,平面和立體的化學結構分析,結構改造和結構修飾的研究,以及糖醛酸、蛋白質、單糖和多糖的含量測定等等。下面簡單介紹多糖的結構、分子量及分子量分布以及含量測定等方面的研究進展。 1、結構分析目前在多糖一級結構的分析中大多採用化學方法與物理方法相結合,可基本闡明某一多糖的一級結構的大致特徵。而目前用於多糖高級結構分析的方法主要是物理方法, 諸如 X-射線纖維衍射、核磁共振、電子衍射等。如上所述,多糖的一級結構本身就很復雜。由於多糖結構的微觀不均一性, 或結構鍵中有缺陷, 或是分子量分散, 使多糖的一級結構分析難以得出完全正確的結構式。多糖結構的描述包括:①多糖的分子量范圍;②多糖的單糖組分;③單糖的連接點類型;④單糖和糖苷鍵的構型;⑤重復單位。多糖的活性與其初級和高級結構密切相關,高級結構在活性方面比一級結構起更大作用。有些多糖一級結構相同, 但活性不同, 其原因是二級及三級結構不同。目前多糖的立體結構研究一般靠 2D-NMR及X-衍射法。除此之外, 多糖的活性還與分子量、溶解度、粘度等理化性質有關。在研究多糖的構效關系時, 常用到多糖的分子修飾, 對多糖進行化學修飾,如硫酸化、脫硫酸化、化學降解、酶降解、乙醯化、烷基化等等, 有助於深入探討其構效關系。下面將簡單介紹化學方法和物理分析方法。(1)化學方法測定多糖結構還是目前最常用的方法,測定的手段很多,其中經典而有效的是甲基化分析、高碘酸氧化和Smith降解、部分酸水解以及乙醯解和甲醇解等。 ①甲基化分析 甲基化分析是多糖也是寡糖結構分析的最有力的手段之一。它包括糖的所有自由羥基全部生成甲醚,接著通過水解釋放出甲基化單糖,再經NaBH4還原成糖醇,進而乙醯化水解後生成的羥基,得到各種部分甲基化的糖醇乙醯衍生物,生成的產物用氣相色譜進行定性和定量分析,可確定組成多糖的各單糖種類和比例,進而用氣相色譜—質譜,結合標准譜圖的分析,可得到各種部分甲基化單糖衍生物的歸屬,從而確定各單糖的連接位置,即糖苷鍵的位置。但甲基化分析還無法知道異頭碳糖苷鍵構型及多糖中單糖殘基的順序信息, 所要注意的是對含有糖醛酸或氨基己糖殘基的多糖比較難甲基化,而且有可能會產生二級產物,如糖醛酸殘基能產生縮酮衍生物,N—乙醯基氨基己糖殘基可產生N—甲基 -N-乙醯氨基己糖,對這些衍生物需要特殊分析技術才能鑒定。 ②過碘酸氧化及Smith降解 多糖的過碘酸氧化反應通常在pH3-5的水溶液中進行,用過碘酸鹽為氧化劑,因雙醛型的氧化產物在水中不穩定,因此需要在酸水解前用NaBH4將它們還原為醇,最後,通過水解產物的分析結果可獲得多糖中單糖連接的類型是l→4,1→-6,1→2,還是各種連接兼而有之。 Smith降解實際上是一種改良的過碘酸氧化,它是將多糖過碘酸鹽氧化,NaBH4還原後用弱酸部分水解 (通常在室溫下用稀無機酸水解還原產物),生成具有特徵性的糖連接的重復單元,從而獲得更多的結構信息。 ③部分酸水解這是多糖結構分析中一個很有用的技術,一是通過部分酸水解可以獲得結構較為容易測定的短鏈片段,從而集零為整推斷出多糖的結構。二是可以在特殊糖苷鍵處斷裂,幫助整個結構分析。如呋喃環結構的單糖對酸不穩定,用弱酸水解 (就可以得到這些殘基,再通過殘基片段的分析可得到有用的結構數據。一個成功的例子是枸杞子糖蛋白中一條由阿拉伯糖和半乳糖組成的O—連接多糖,並從甲基化分析結構得知,該多糖的非還原末端均為呋喃環阿拉伯糖,通過部分酸水解並用紙層析跟蹤檢測,首先釋放出Ara,到剛有Ga1釋放時終止水解,通過水解前後兩種多糖的甲基化分析結果比較,再結合其他方法測得的結果可推斷出整個多糖的可能結構。 ④乙醯解和甲醇解 乙醯解:多糖的乙醯解反應是在由乙酸酐、乙酸和硫酸組成的混合液中加熱進行的,在一定的糖苷鍵處裂解。研究表明,相同糖苷鍵在酸水解和乙醯解中的速度是不同的。乙醯解是酸水解的一種有用的補充,多糖可從這兩種不同的方法中獲得不同的片段,從不同的角度獲得多糖的結構信息。甲醇解:多糖在80-100℃條件下與無水甲醇氯化氫反應能將多糖變成組成單糖的甲基糖苷,這些甲基糖苷能轉化為三甲基硅醚衍生物或乙醯基衍生物,然後進行GC分析並與標准單糖對照,可得到組成多糖的各單糖的定量數據。(2)物理分析法 ①IR法:IR在多糖結構分析上主要是確定吡喃糖的苷鍵構型,以及常規觀察其他官能團。一般主要觀察730-960cm-1的范圍,如對於α-吡喃糖,δC1-H在 845 cm-1,而β-吡喃糖,δC1-H在890cm-1有最大吸收峰。 ②MS、GC-MS:GC分析多糖雖受樣品揮發性和熱穩定性的限制,但GC-MS是多糖結構分析不可缺少的工具,特別是對水解單糖、甲基化單糖及甲基化寡糖的分析,而且能鑒別出糖的異構體。MS在多糖結構分析中不僅在鑒別各種甲基衍生物的碎片,確定各種單糖殘基的連接位置時必不可少,而且由於FAB-MS、ESI-MS和 MALDI-MS等技術的出現,利用質譜還可以測定多糖的分子量及一級結構。 ③NMR:用NMR技術研究多糖結構的一個特點是不破壞樣品,對多糖的結構特徵可通過化學位移、偶合常數、積分面積、NOE及馳豫時間等參數來表達。一維、二維圖譜 NMR在分析糖的構型、相互連接的位置及順序等方面具有廣闊的應用前景。 2、分子量及分子量分布多糖具有分子大小不均一的特點,近年來發現這些生物大分子的某一分子量范圍成分具有葯理活性,而另一分子量范圍的成分不具有葯理活性或具有一定的毒副作用,因此分子量及其分布既是這類葯物的有效性控制的指標又是安全性控制的指標,質量標准中制訂該項檢查十分必要,這也是近年來大分子聚合物葯物質量標准發展的一個明顯的特點。多糖分子量只是代表相似鏈長的平均配布,不同方法所測得的分子量不同,即使是同一多糖,其重均分子量與數均分子量也相差較大,通常採用凝膠色譜法控制這類葯物的分子量及其分布,應經研究選用與供試品分子大小相適應的色譜柱填充劑;使用的流動相通常為水或緩沖液,其pH值不應超過填充劑的耐受范圍,可加入適量的有機溶劑,但濃度不應超過30%,流速以 0.5-1.0ml/min為宜,因這類分子多無紫外吸收,一般採用示差折光檢測器,選用對照品的分子量范圍及顆粒形狀應與供試品匹配,測定數據經適宜的GPC軟體處理求得相關參數。 3、含量測定一般來講,多糖不含蛋白和氨基酸,蛋白或氨基酸檢測應呈陰性或符合限度檢查要求,如為糖蛋白或糖肽,應提供其證據,以保證產品不是多糖與蛋白的混合物;並提供其氨基酸構成及蛋白含量范圍,以保證質量穩定可控。對從天然植物中得到的多糖, 在結構研究中尤其對糖組成分析, 確定其中是否含有糖醛酸殘基具有很重要的意義。糖醛酸的含量測定目前較常用的是硫酸咔唑法,但容易受中性糖殘基的干擾。為了消除測定的干擾,可先測定樣品中中性糖的吸收度,然後從樣品的吸收度減去中性糖的吸收度,即為樣品中糖醛酸的吸收度值。間羥基聯苯法也是一種常用的多糖中糖醛酸含量測定方法,該法較硫酸咔唑法受中性糖殘基的干擾更小。多糖的含量測定可分為兩大類: 一類是直接測定多糖本身, 如高效液相色譜法和酶法;另一類是利用組成多糖的單糖縮合反應而建立的方法,如苯酚-硫酸法、蒽酮-硫酸法等。前者需要多糖的純品和特定的酶,後者測定時方法學干擾較大,現有的比色重現性差,受影響因素多。但由於目前國內的實驗條件,多糖的含量仍然主要採用這種方法,其原理為:多糖在濃硫酸水合產生的高溫下迅速水解,產生單糖,單糖在強酸條件下與苯酚反應生成橙色衍生物。在波長490nm左右處和一定濃度范圍內,該衍生物的吸收值與單糖濃度呈線性關系,從而可用比色法測定其含量,所用的單糖對照品盡量採用與其多糖組成一致或為含量較高的單糖,這樣測得的值較准確。需要強調的是,這種方法所測定的是總糖的含量而不是總多糖的含量,因此首先應測定樣品中游離的單糖含量,然後將總糖的含量減去游離單糖的含量,即為總多糖的含量。另外還可以採用3,5-二硝基水楊酸比色法(DNS法),它是在鹼性條件下顯色,較准確測定還原糖與總糖的含量從而求出多糖的含量,可消除還原性雜質的干擾。
❻ 茶多糖的研究現狀
中國對多糖的研究始於20世紀70年代,且發展很快。由於多糖多種多樣的生物活性功能以及在功能食品和臨床上廣泛使用,使多糖生物資源的開發利用和研究日益活躍,成為天然葯物、生物化學、生命科學的研究熱點。茶多糖是茶葉復合多糖的簡稱,由糖類、果膠、蛋白質等組成,其中多糖部分包括阿拉伯糖、木糖、葡萄糖、半乳糖、半乳葡聚等水溶性多糖。近些年來發現茶多糖還具有治療糖尿病的功效[4]。清水岑夫(1987)研究發現,服用茶多糖鏈脲佐菌素誘發的高血糖小鼠血糖明顯下降,最高下降率達40%;對正常小鼠腹腔注射茶多糖500mg/kg,給葯7h後出現降血糖效果。王小剛等(1991)報道,分別給正常小鼠灌胃50mg/kg和100mg/kg的茶多糖,小鼠血糖濃度分別下降了14%和17%;而分別給正常小鼠腹腔注射25mg/kg和100mg/kg的茶多糖,其血糖濃度分別下降48%和52%,因此,不同給葯方式降血糖的效果不同。Isiguki k.等(1992)發現腹腔注射茶多糖可使大鼠的血糖下降;將茶多糖用於糖尿病的輔助治療,所有患者的症狀均有好轉。Tadadazu T.等(1998)對鏈脲佐菌素誘導發的高血糖模型大鼠用茶多糖灌胃,發現有明顯的降血糖用用。據江和源等(2004)報道,茶多糖對正常小鼠及四氧嘧啶必糖尿病小鼠具有降血糖作用,這可能與茶多糖能減弱四氧嘧啶對胰島β細胞的損傷或改善受損傷的β細胞的功能有關。
❼ 多糖的生物功能有哪些對於多糖的葯理學價值和最新的研究進展有哪些
什麼是多糖,多糖的生物學功能
多糖是由多個單糖分子縮合、失水而成,是一類分子機構復雜且龐大的糖類物質。其通式為(C6H12O6)x。多糖 polysaccharide 凡符合高分子化合物概念的碳水化合物及其衍生物均稱為多糖。
有由一種類型的單糖組成的葡萄糖、甘露聚糖、半乳聚糖等(通常在英語的單糖詞幹上加上an這個詞尾),由二種以上的單糖組成的雜多糖(hetero polysaccharide),含有氨基糖的葡糖胺葡聚糖等,在化學結構上實屬多種多樣。就分子量而論,有從0.5萬個分子組成的到超過106個的多糖。由糖苷鍵結合的糖鏈,至少要超過10個以上的單糖組成的聚合糖才稱為多糖。比10個少的短鏈的稱為寡糖。不過,就糖鏈而論即使是寡糖,在寡糖上結合了蛋白質和脂類的,就整個分子而論,如果是屬於高分子,則從廣義上來看也屬於多糖,因此特稱為復合多糖(conjugated polysaccharide,complex poly-saccharide)或復合糖質(glycoconjugate)(糖蛋白、糖脂類、蛋白多糖)。
多糖的生物學功能,通常具有貯藏生物能〔如:澱粉、糖原、菊粉(inulin)〕和支持結構〔如:纖維素、幾丁質(chitin)、粘多糖〕的作用。但是,細胞膜和細胞壁的多糖成份不僅是支持物質,而且還直接參與細胞的分裂過程,在許多情況下成為細胞和細胞,細胞和病毒,細胞和抗體等相互識別結構的活性部位。生物合成通常是由結合在細胞膜質(高爾基體、原生質膜、粗面內質網等)上的轉糖基酶進行。利用各種糖苷作為前體。
在細菌細胞壁和聚多糖的生物合成中,多萜醇衍生物(特別是稱為細菌萜醇的)作為中間體參與反應,關於動、植物某些多糖的合成也有類似的中間體的報道。另一方面,在分解過程中,有對糖鏈的糖排列次序和鍵的性質有特異性的多種糖苷酶參與。動物細胞中則多以溶酶體系統的酶存在。
此外,常能看到因缺損這些酶中的某種所導致的遺傳病。這是顯示多糖代謝重要性的典型例子。
❽ 多糖的結構
多糖(polysaccharide)是由多個單糖分子縮合、失水而成,是一類分子結構復雜且龐大的糖類物質。凡符合高分子化合物概念的碳水化合物及其衍生物均稱為多糖。多糖在自然界分布極廣,亦很重要。有的是構成動植物細胞壁的組成成分,如肽聚糖和纖維素;有的是作為動植物儲藏的養分,如糖原和澱粉;有的具有特殊的生物活性,像人體中的肝素有抗凝血作用,肺炎球菌細胞壁中的多糖有抗原作用。多糖的結構單位是單糖,多糖相對分子質量從幾萬到幾千萬。結構單位之間以苷鍵相連接,常見的苷鍵有α-1,4-、β-1,4-和α-1,6-苷鍵。結構單位可以連成直鏈,也可以形成支鏈,直鏈一般以α-1,4-苷鍵(如澱粉)和β-1,4-苷鍵9如纖維素)連成;支鏈中鏈與鏈的連接點常是α-1,6-苷鍵。
由一種類型的單糖組成的有葡萄糖、甘露聚糖、半乳聚糖等,由二種以上的單糖組成的雜多糖(hetero polysaccharide)有氨基糖的葡糖胺葡聚糖等,在化學結構上實屬多種多樣。就分子量而論,有從0.5萬個分子組成的到超過106個的多糖。比10個少的短鏈的稱為寡糖。不過,就糖鏈而論即使是寡糖,在寡糖上結合了蛋白質和脂類的,就整個分子而論,如果是屬於高分子,則從廣義上來看也屬於多糖,因此特稱為復合多糖 (conjugated polysaccharide,complex poly-saccharide)或復合糖質(glycoconjugate)(糖蛋白、糖脂類、蛋白多糖)。
❾ 植物多糖的結構是怎樣的
植物多糖結構組成非常復雜,不同種的植物多糖的分子構成及分子量各不相同。多糖也具有一、二、三、四級結構,一級結構是指糖基的組成,糖基排列順序,相鄰糖基的連接方式;多糖的二級結構是指多糖主鏈間以氫鍵為主要次級鍵而形成的有規則的構象;多糖的三級結構和四級結構是指以二級結構為基礎,由於糖單位之間的非共價相互作用,導致二級結構在有序的空間里產生的有規則的構象。
多糖的結構單位是單糖,相同或不同的單糖以α-或β-糖苷鍵相連接,結構單位可以連成直鏈,也可以形成支鏈,自然界許多動植物和微生物多糖的基本結構單元是葡聚糖。