導航:首頁 > 研究方法 > 廣東相噪分析儀使用方法

廣東相噪分析儀使用方法

發布時間:2022-06-28 12:24:57

① 關於電子測試

1.頻譜分析儀的使用

1.1 頻譜分析儀的原理

頻譜分析儀是一台在一定頻率范圍內掃描接收的接收機,它的原理圖如圖1所示。

圖1 頻譜分析儀的原理框圖

頻譜分析儀採用頻率掃描超外差的工作方式。混頻器將天線上接收到的信號與本振產生的信號混頻,當混頻的頻率等於中頻時,這個信號可以通過中頻放大器,被放大後,進行峰值檢波。檢波後的信號被視頻放大器進行放大,然後顯示出來。由於本振電路的振盪頻率隨著時間變化,因此頻譜分析儀在不同的時間接收的頻率是不同的。當本振振盪器的頻率隨著時間進行掃描時,屏幕上就顯示出了被測信號在不同頻率上的幅度,將不同頻率上信號的幅度記錄下來,就得到了被測信號的頻譜。

根據這個頻譜,就能夠知道被測設備是否有超過標准規定的干擾發射,或產生干擾的信號頻率是多少。

1.2 頻譜分析儀的使用方法

要獲得正確的測量結果,必須正確地操作頻譜分析儀。本節簡單介紹頻譜分析儀的使用方法。正確使用頻譜分析儀的關鍵是正確設置頻譜分析儀的各個參數。下面解釋頻譜分析儀中主要參數的意義和設置方法。

頻率掃描范圍:
規定了頻譜分析儀掃描頻率的上限和下限。通過調整掃描頻率范圍,可以對感興趣的頻率進行細致的觀察。掃描頻率范圍越寬,則掃描一遍所需要時間越長,頻譜上各點的測量精度越低,因此,在可能的情況下,盡量使用較小的頻率范圍。在設置這個參數時,可以通過設置掃描開始頻率和終止頻率來確定,例如:start frequency = 1MHz, stop frequency = 11MHz。也可以通過設置掃描中心頻率和頻率范圍來確定,例如:center frequency = 6MHz, span = 10MHz。這兩種設置的結果是一樣的。

中頻分辨帶寬:
規定了頻譜分析儀的中頻帶寬,這項指標決定了儀器的選擇性和掃描時間。調整分辨帶寬可以達到兩個目的,一個是提高儀器的選擇性,以便對頻率相距很近的兩個信號進行區別。另一個目的是提高儀器的靈敏度。因為任何電路都有熱雜訊,這些雜訊會將微弱信號淹沒,而使儀器無法觀察微弱信號。雜訊的幅度與儀器的通頻帶寬成正比,帶寬越寬,則雜訊越大。因此減小儀器的分辨帶寬可以減小儀器本身的雜訊,從而增強對微弱信號的檢測能力。
分辨帶寬一般以3dB帶寬來表示。當分辨帶寬變化時,屏幕上顯示的信號幅度可能會發變化。若測量信號的帶寬大於通頻帶帶寬,則當帶寬增加時,由於通過中頻放大器的信號總能量增加,顯示幅度會有所增加。若測量信號的帶寬小於通頻帶寬,如對於單根譜線的信號,則不管分辨帶寬怎樣變化,顯示信號的幅度都不會發生變化。 信號帶寬超過中頻帶寬的信號稱為寬頻信號,信號帶寬小於中頻帶寬的信號稱為窄帶信號。根據信號是寬頻信號還是窄帶信號能夠有效地定位干擾源。

掃描時間:
儀器接收的信號從掃描頻率范圍的最低端掃描到最高端所使用的時間叫做掃描時間。掃描時間與掃描頻率范圍是相匹配的。如果掃描時間過短,測量到的信號幅度比實際的信號幅度要小。

視頻帶寬:
視頻帶寬的作用與中頻帶寬相同,可以減小儀器本身的帶內雜訊,從而提高儀器對微弱信號的檢測能力。

2.用頻譜分析儀分析干擾的來源

2.1 根據干擾信號的頻率確定干擾源

在解決電磁干擾問題時,最重要的一個問題是判斷干擾的來源,只有準確將干擾源定位後,才能夠提出解決干擾的措施。根據信號的頻率來確定干擾源是最簡單的方法,因為在信號的所有特徵中,頻率特徵是最穩定的,並且電路設計人員往往對電路中各個部位的信號頻率都十分清楚。因此,只要知道了干擾信號的頻率,就能夠推測出干擾是哪個部位產生的。
對於電磁干擾信號,由於其幅度往往遠小於正常工作信號,因此用示波器很難測量到干擾信號的頻率。特別是當較小的干擾信號疊加在較大的工作信號上時,示波器無法與干擾信號同步,因此不可能得到准確的干擾信號頻率。
而用頻譜分析儀做這種測量是十分簡單的。由於頻譜分析儀的中頻帶寬較窄,因此能夠將與干擾信號頻率不同的信號濾除掉,精確地測量出干擾信號頻率,從而判斷產生干擾信號的電路。

2.2 根據干擾信號的帶寬確定干擾源

判斷干擾信號的帶寬也是判斷干擾源的有效方法。例如,在一個寬頻源的發射中可能存在一個單個高強度信號,如果能夠判斷這個高強度信號是窄帶信號,則它不可能是從寬頻發射源產生的。干擾源可能是電源中的振盪器,或工作不穩定的電路,或諧振電路。當在儀器的通頻帶中只有一根譜線時,就可以斷定這個信號是窄帶信號。
根據傅立葉變換,單根的譜線所對應的信號是周期信號。因此,當遇到單根譜線時,就要將注意力集中到電路中的周期信號電路上。

3.用近場測試方法確定輻射源

除了上述的根據信號特徵判斷干擾源的方法以外,在近場區查找輻射源可以直接發現干擾源。在近場區查找輻射源的工具有近場探頭和電流卡鉗。檢查電纜上的發射源要使用電流卡鉗,檢查機箱縫隙的泄漏要使用近場探頭。

3.1 電流卡鉗與近場探頭

電流探頭是利用變壓器原理製造的能夠檢測導線上電流的感測器。當電流探頭卡在被測導線上時,導線相當於變壓器的初級,探頭中的線圈相當於變壓器的次級。導線上的信號電流在電流探頭的線圈上感應出電流,在儀器的輸入端產生電壓。於是頻譜分析儀的屏幕上就可以看到干擾信號的頻譜。儀器上讀到的電壓值與導線中的電流值通過傳輸阻抗換算。傳輸阻抗定義為:儀器50? 輸入阻抗上感應的電壓與導線中的電流之比。對於一個具體的探頭,可以從廠家提供的探頭說明書中查到它的轉移阻抗ZT。因此,導線中的電流等於:

I = V / ZT

如果公式中的所有物理量都用dB表示,則直接相減。
對於機箱的泄漏,要用近場探頭進行探測。近場探頭可以看成是很小的環形天線。由於它很小,因此靈敏度很低,僅能對近場的輻射源進行探測。這樣有利於對輻射源進行精確定位。由於近場探頭的靈敏度較低,因此在使用時要與前置放大器配套使用。

3.2 用電流卡鉗檢測共模電流

設備產生輻射的主要原因之一是電纜上有共模電流。因此當設備或系統有超標發射時,首先應該懷疑的就是設備上外拖的各種電纜。這些電纜包括電源線電纜和設備之間的互連電纜。
將電流探頭卡在電纜上,這時由於探頭同時卡住了信號線和迴流線,因此差模電流不會感應出電壓,儀器上讀出的電壓僅代表共模電流。
測量共模電流時,最好在屏蔽室中進行。如果不在屏蔽室中,周圍環境中的電磁場會在電纜上感應出電流,造成誤判斷。因此應首先將設備的電源斷開,在設備沒有加電的狀態下測量電纜上的背景電流,並記錄下來,以便與設備加電後測量的結果進行比較,排除背景的影響。
如果在用天線進行測量時將頻譜分析儀的掃描頻率局限感興趣的頻率周圍很小的范圍內,則可以排除環境中的干擾。

3.3 用近場探頭檢測機箱的泄漏

如果設備上外拖電纜上沒有較強的共模電流,就要檢查設備機箱上是否有電磁泄漏。檢查機箱泄漏的工具是近場探頭。將近場探頭靠近機箱上的接縫和開口處,觀察頻譜分析儀上是否有感興趣的信號出現。一般由於探頭的靈敏度較低,即使用了放大器,很弱的信號在探頭中感應的電壓也很低,因此在測量時要將頻譜分析儀的靈敏度調得盡量高。根據前面的討論,減小頻譜分析儀的分辨帶寬能夠提高儀器的靈敏度。但是要注意的是,當分辨帶寬很窄時,掃描時間會變得很長。為了縮短掃描時間,提高檢測效率,應該使頻譜分析儀的掃描頻率范圍盡量小。因此一般在用近場探頭檢測機箱泄漏時,都是首先用天線測出泄漏信號的精確頻率,然後使儀器用盡量小的掃描頻率范圍覆蓋住這個干擾頻率。這樣做的另一個好處是不會將背景干擾誤判為泄漏信號。
對於機箱而言,靠近濾波器安裝位置的縫隙是最容易產生電磁泄漏的。因為濾波器將信號線上的干擾信號旁路到機箱上,在機箱上形成較強的干擾電流,這些電流流過縫隙時,就會在縫隙處產生電磁泄漏。

4.容易犯的錯誤

當設備不能滿足有關的電磁兼容標准時,就要對設備產生超標發射的原因進行調查,然後進行排除。在這個過程中,經常發現許多人經過長時間的努力,仍然沒有排除故障。造成這種情況的原因是診斷工作陷入了「死循環」。這種情況可以用下面的例子說明。
假設一個系統在測試時出現了超標發射,使系統不能滿足電磁兼容標准中對電磁輻射的限制。經過初步調查,原因可能有4個,它們分別是:

主機與鍵盤之間的互連電纜(電纜1)上的共模電流產生的輻射
主機與列印機之間的互連電纜(電纜2)上的共模電流產生的輻射
機箱面板與機箱基體之間的縫隙(開口1)產生的泄漏
某顯示窗口(開口2)產生泄漏
在診斷時,首先在電纜1上套一個鐵氧體磁環,以減小共模輻射,結果發現頻譜儀屏幕上顯示的信號並沒有明顯減小。於是試驗人員認為電纜1不是一個主要的泄漏源,將鐵氧體磁環取下,套在電纜2上,結果發現頻譜儀屏幕上顯示的信號還沒有明顯減小。結果試驗人員得出結論,電纜不是泄漏源。
於是再對機箱上的泄漏進行檢查。用屏蔽膠帶將開口1堵上,發現頻譜儀屏幕上顯示的信號沒有明顯減小。試驗人員認為開口1不是主要泄漏源,將屏蔽膠帶取下,堵到開口2上。結果頻譜儀上的顯示信號還沒有減小。試驗人員一籌莫展。之所以會發生這個問題,是因為試驗人員忽視了頻譜分析儀上顯示的信號幅度是以dB為單位顯示的。下面我們看一下為什麼會有這種現象。
假設這4個泄漏源所佔的成分各佔1/4,並且在每個輻射源上採取的措施能夠將這個輻射源完全抑制掉。則我們採取以上4個措施中的一個時,頻譜儀上顯示信號降低的幅度ΔA為:

ΔA = 20 lg ( 4 / 3 ) = 2.5 dB

幅度減小這么少,顯然是微不足道的。但這卻已經將泄漏減少了25%。
正確的方法是,當對一個可能的泄漏源採取了抑制措施後,即使沒有明顯的改善,也不要將這個措施去掉,繼續對可能的泄漏源採取措施。當採取到某個措施時,如果幹擾幅度降低很多,並不一定說明這個泄漏源是主要的,而僅說明這個干擾源是最後一個。按照這個步驟對4個泄漏源逐個處理的結果如圖1所示。
在前面的敘述中,我們假定對某個泄漏源採取措施後,這個泄漏源被100%消除掉,如果這樣,當最後一個泄漏源去掉後,電磁干擾的減小應為無限大。實際這是不可能的。我們在採取任何一個措施時,都不可能將干擾源100%消除。泄漏源去掉的程度可以是99% ,或99.9% ,甚至99.99以上,而決不可能是100% !所以當最後一個泄漏源去掉後,盡管改善很大,但仍是有限值。
當設備完全符合有關的規定後,如果為了降低產品成本,減少不必要的器件,可以將採取的措施逐個去掉。首先應該考慮去掉的是成本較高器件/材料,或在正式產品上難於實現的措施。如果去掉後,產品的電磁發射並沒有超標,就可以去掉這個措施。通過試驗,使產品成本降到最低。

圖 2 抑制4個泄漏源時干擾幅度的變化

5.產品電磁兼容測試診斷步驟

圖3給出了一個設備或系統的電磁干擾發射與故障分析步驟,按照這個步驟進行可以提高測試診斷的效率。

圖3 電磁兼容測試診斷步驟

關於圖3的說明如下:

電磁兼容測試一般首先測量干擾發射,因為干擾發射的試驗費用一般比敏感度試驗費用低。另外當設備的干擾發射能夠滿足要求時,往往敏感度也不會有大的問題。因為幾乎所有的解決干擾發射的措施同樣對改善敏感度有效。
測量干擾發射時要先測量傳導發射,不僅要在標准規定的頻率范圍內測量,還要對更高的頻率進行摸底測量。當電源線上有較強的干擾電流時,要先解決這個問題。因為這些傳導干擾電流會藉助導線的天線作用產生輻射,導致輻射發射不合格。
當傳導發射完全合格後,再進行輻射發射測試。對於輻射發射不合格的頻率,要記錄下精確頻率,便於在用近場探頭查找問題時,將頻譜分析儀的掃描范圍設置在干擾頻率附近。

② 音頻分析儀使用方法

音頻是多媒體中的一種重要媒體。SYS-2722音頻分析儀我們能夠聽見的音頻信號的頻率范圍大約是20Hz-2OkHz,其中語音大約分布在300Hz-4kHz之內,而音樂和其他自然聲響是全范圍分布的。聲音經過模擬設備記錄或再生,成為模擬音頻,再經數字化成為數字音頻。這里所說的音頻分析就是以數字音頻信號為分析對象,以數字信號處理為分析手段,提取信號在時域、頻域內一系列特性的過程。各種特定頻率范圍的音頻分析有各自不同的應用領域。例如,對於300-4kHz之間的語音信號的分析主要應用於語音識別,其用途是確定語音內容或判斷說話者的身份;而對於20-20kHz之間的全范圍的語音信號分析則可以用來衡量各類音頻設備的性能。所謂音頻設備就是將實際的聲音拾取到將聲音播放出來的全部過程中需要用到的各類電子設備,例如話筒、功率放大器、揚聲器等,衡量音頻設備的主要技術指標有頻率響應特性、諧波失真、信噪比、動態范圍等。

③ R&S頻譜儀/接收機/相噪分析儀如何操作自檢和自校準呢

頻譜儀/接收機/相噪分析儀
<1>FSW/FSWP/ESW/FSV(A)30xx/FPS
自檢
[SETUP]>Service and Support>Selftest>Start Selftest
自校準
[SETUP]>Alignment>Start Self-Alignment
固件檢查、升級或修復
[SETUP]>System Config>Versions+Options顯示firmware版本
[SETUP] >System Configuration>Firmware Update升級firmware
也可以在windows資源管理器直接安裝firmware
<2>FSV/FSVA/ESR
自檢
[SETUP]>More>Service>Selftest
自校準
[SETUP]>Alignment>Self Alignment
固件檢查、升級或修復
[SETUP]>System Info>Versions+Options顯示firmware版本
[SETUP] >More>Firmware Update升級firmware
也可以在windows資源管理器直接安裝firmware
<3>FSMR/ESU/FSP/FSU/FSQ/FSUP
自檢
[SETUP]>SERVICE>SELFTEST
自校準
[CAL]>CAL TOTAL
固件檢查、升級或修復
[SETUP]>System Info>STATISTICS顯示firmware版本
[SETUP] >NEXT>Firmware Update升級firmware
也可以在windows資源管理器直接安裝firmware
<4>FPL
自檢
[SETUP]>Service>Selftest>Start Selftest
自校準
[SETUP]>Alignment>Start Self Alignment
固件檢查、升級或修復
[SETUP]>System Configuration>Versions+Options顯示firmware版本
[SETUP] >System Configuration>Firmware Update升級firmware
也可以在windows資源管理器直接安裝firmware
<5>FSL/ESL
自檢
[SETUP]>More>Service>Selftest
自校準
[SETUP]>Alignment>Self Align
固件檢查、升級或修復
[SETUP]>System Info>Versions+Options顯示firmware版本
[SETUP] >More>Firmware Update升級firmware
也可以在windows資源管理器直接安裝firmware
希望以上內容可以幫到你

④ 什麼叫相位雜訊 再頻譜測試中用什麼作用呢

沒有一種振盪器是絕對穩定的。雖然我們看不到頻譜分析儀本振系統的實際頻率抖動,但仍能觀察到本振頻率或相位不穩定性的明顯表徵,這就是相位雜訊(有時也叫雜訊邊帶)。

它們都在某種程度上受到隨機雜訊的頻率或相位調制的影響。本振的任何不穩定性都會傳遞給由本振和輸入信號所形成的混頻分量,因此本振相位雜訊的調制邊帶會出現在幅度遠大於系統寬頻底噪的那些頻譜分量周圍。顯示的頻譜分量和相位雜訊之間的幅度差隨本振穩定度而變化,本振越穩定,相位雜訊越小。它也隨解析度帶寬而變,若將解析度帶寬縮小 10 倍,顯示相位雜訊電平將減小 10 dB。

相位雜訊頻譜的形狀與分析儀的設計,尤其是用來穩定本振的鎖相環結構有關。在某些分析儀中,相位雜訊在穩定環路的帶寬中相對平坦,而在另一些分析儀中,相位雜訊會隨著信號的頻偏而下降。相位雜訊採用 dBc(相對於載波的 dB 數)為單位,並歸一化至 1 Hz 雜訊功率帶寬。有時在特定的頻偏上指定,或者用一條曲線來表示一個頻偏范圍內的相位雜訊特性。

通常,我們只能在解析度帶寬較窄時觀察到頻譜儀的相位雜訊,此時相位雜訊使這些濾波器的響應曲線邊緣變得模糊。使用前面介紹過的數字濾波器也不能改變這種效果。對於解析度帶寬較寬的濾波器,相位雜訊被掩埋在濾波器響應曲線的邊帶之下,正如之前討論過的兩個非等幅正弦波的情況。

一些現代頻譜儀或信號分析儀(例如是德科技 X 系列)允許用戶選擇不同的本振穩定度模式,使得在各種不同的測量環境下都能具備最佳的相位雜訊。

在任何情況下,相位雜訊都是頻譜儀分辨不等幅信號能力的最終限制因素。如圖所示,根據 3 dB 帶寬和選擇性理論,我們應該能夠分辨出這兩個信號,但結果是相位雜訊掩蓋了較小的信號。

⑤ 示波器使用

在數字電路實驗中,需要使用若干儀器、儀表觀察實驗現象和結果。常用的電子測量儀器有萬用表、邏輯筆、普通示波器、存儲示波器、邏輯分析儀等。萬用表和邏輯筆使用方法比較簡單,而邏輯分析儀和存儲示波器目前在數字電路教學實驗中應用還不十分普遍。示波器是一種使用非常廣泛,且使用相對復雜的儀器。本章從使用的角度介紹一下示波器的原理和使用方法。

1 示波器工作原理

示波器是利用電子示波管的特性,將人眼無法直接觀測的交變電信號轉換成圖像,顯示在熒光屏上以便測量的電子測量儀器。它是觀察數字電路實驗現象、分析實驗中的問題、測量實驗結果必不可少的重要儀器。示波器由示波管和電源系統、同步系統、X軸偏轉系統、Y軸偏轉系統、延遲掃描系統、標准信號源組成。
1.1 示波管
陰極射線管(CRT)簡稱示波管,是示波器的核心。它將電信號轉換為光信號。正如圖1所示,電子槍、偏轉系統和熒光屏三部分密封在一個真空玻璃殼內,構成了一個完整的示波管。

圖1 示波管的內部結構和供電圖示

1.熒光屏
現在的示波管屏面通常是矩形平面,內表面沉積一層磷光材料構成熒光膜。在熒光膜上常又增加一層蒸發鋁膜。高速電子穿過鋁膜,撞擊熒光粉而發光形成亮點。鋁膜具有內反射作用,有利於提高亮點的輝度。鋁膜還有散熱等其他作用。
當電子停止轟擊後,亮點不能立即消失而要保留一段時間。亮點輝度下降到原始值的10%所經過的時間叫做「余輝時間」。余輝時間短於10μs為極短余輝,10μs—1ms為短余輝,1ms—0.1s為中余輝,0.1s-1s為長余輝,大於1s為極長余輝。一般的示波器配備中余輝示波管,高頻示波器選用短余輝,低頻示波器選用長余輝。
由於所用磷光材料不同,熒光屏上能發出不同顏色的光。一般示波器多採用發綠光的示波管,以保護人的眼睛。
2.電子槍及聚焦
電子槍由燈絲(F)、陰極(K)、柵極(G1)、前加速極(G2)(或稱第二柵極)、第一陽極(A1)和第二陽極(A2)組成。它的作用是發射電子並形成很細的高速電子束。燈絲通電加熱陰極,陰極受熱發射電子。柵極是一個頂部有小孔的金屬園筒,套在陰極外面。由於柵極電位比陰極低,對陰極發射的電子起控製作用,一般只有運動初速度大的少量電子,在陽極電壓的作用下能穿過柵極小孔,奔向熒光屏。初速度小的電子仍返回陰極。如果柵極電位過低,則全部電子返回陰極,即管子截止。調節電路中的W1電位器,可以改變柵極電位,控制射向熒光屏的電子流密度,從而達到調節亮點的輝度。第一陽極、第二陽極和前加速極都是與陰極在同一條軸線上的三個金屬圓筒。前加速極G2與A2相連,所加電位比A1高。G2的正電位對陰極電子奔向熒光屏起加速作用。
電子束從陰極奔向熒光屏的過程中,經過兩次聚焦過程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一電子透鏡。第二次聚焦發生在G2、A1、A2區域,調節第二陽極A2的電位,能使電子束正好會聚於熒光屏上的一點,這是第二次聚焦。A1上的電壓叫做聚焦電壓,A1又被叫做聚焦極。有時調節A1電壓仍不能滿足良好聚焦,需微調第二陽極A2的電壓,A2又叫做輔助聚焦極。
3.偏轉系統
偏轉系統控制電子射線方向,使熒光屏上的光點隨外加信號的變化描繪出被測信號的波形。圖8.1中,Y1、Y2和Xl、X2兩對互相垂直的偏轉板組成偏轉系統。Y軸偏轉板在前,X軸偏轉板在後,因此Y軸靈敏度高(被測信號經處理後加到Y軸)。兩對偏轉板分別加上電壓,使兩對偏轉板間各自形成電場,分別控制電子束在垂直方向和水平方向偏轉。
4.示波管的電源
為使示波管正常工作,對電源供給有一定要求。規定第二陽極與偏轉板之間電位相近,偏轉板的平均電位為零或接近為零。陰極必須工作在負電位上。柵極G1相對陰極為負電位(—30V~—100V),而且可調,以實現輝度調節。第一陽極為正電位(約+100V~+600V),也應可調,用作聚焦調節。第二陽極與前加速極相連,對陰極為正高壓(約+1000V),相對於地電位的可調范圍為±50V。由於示波管各電極電流很小,可以用公共高壓經電阻分壓器供電。
1.2 示波器的基本組成
從上一小節可以看出,只要控制X軸偏轉板和Y軸偏轉板上的電壓,就能控制示波管顯示的圖形形狀。我們知道,一個電子信號是時間的函數f(t),它隨時間的變化而變化。因此,只要在示波管的X軸偏轉板上加一個與時間變數成正比的電壓,在y軸加上被測信號(經過比例放大或者縮小),示波管屏幕上就會顯示出被測信號隨時間變化的圖形。電信號中,在一段時間內與時間變數成正比的信號是鋸齒波。
示波器的基本組成框圖如圖2所示。它由示波管、Y軸系統、X軸系統、Z軸系統和電源等五部分組成。

圖2 示波器基本組成框圖

被測信號①接到「Y"輸入端,經Y軸衰減器適當衰減後送至Y1放大器(前置放大),推挽輸出信號②和③。經延遲級延遲Г1時間,到Y2放大器。放大後產生足夠大的信號④和⑤,加到示波管的Y軸偏轉板上。為了在屏幕上顯示出完整的穩定波形,將Y軸的被測信號③引入X軸系統的觸發電路,在引入信號的正(或者負)極性的某一電平值產生觸發脈沖⑥,啟動鋸齒波掃描電路(時基發生器),產生掃描電壓⑦。由於從觸發到啟動掃描有一時間延遲Г2,為保證Y軸信號到達熒光屏之前X軸開始掃描,Y軸的延遲時間Г1應稍大於X軸的延遲時間Г2。掃描電壓⑦經X軸放大器放大,產生推挽輸出⑨和⑩,加到示波管的X軸偏轉板上。z軸系統用於放大掃描電壓正程,並且變成正向矩形波,送到示波管柵極。這使得在掃描正程顯示的波形有某一固定輝度,而在掃描回程進行抹跡。
以上是示波器的基本工作原理。雙蹤顯示則是利用電子開關將Y軸輸入的兩個不同的被測信號分別顯示在熒光屏上。由於人眼的視覺暫留作用,當轉換頻率高到一定程度後,看到的是兩個穩定的、清晰的信號波形。
示波器中往往有一個精確穩定的方波信號發生器,供校驗示波器用。

2 示波器使用

本節介紹示波器的使用方法。示波器種類、型號很多,功能也不同。數字電路實驗中使用較多的是20MHz或者40MHz的雙蹤示波器。這些示波器用法大同小異。本節不針對某一型號的示波器,只是從概念上介紹示波器在數字電路實驗中的常用功能。
2.1 熒光屏
熒光屏是示波管的顯示部分。屏上水平方向和垂直方向各有多條刻度線,指示出信號波形的電壓和時間之間的關系。水平方向指示時間,垂直方向指示電壓。水平方向分為10格,垂直方向分為8格,每格又分為5份。垂直方向標有0%,10%,90%,100%等標志,水平方向標有10%,90%標志,供測直流電平、交流信號幅度、延遲時間等參數使用。根據被測信號在屏幕上占的格數乘以適當的比例常數(V/DIV,TIME/DIV)能得出電壓值與時間值。
2.2 示波管和電源系統
1.電源(Power)
示波器主電源開關。當此開關按下時,電源指示燈亮,表示電源接通。
2.輝度(Intensity)
旋轉此旋鈕能改變光點和掃描線的亮度。觀察低頻信號時可小些,高頻信號時大些。
一般不應太亮,以保護熒光屏。
3.聚焦(Focus)
聚焦旋鈕調節電子束截面大小,將掃描線聚焦成最清晰狀態。
4.標尺亮度(Illuminance)
此旋鈕調節熒光屏後面的照明燈亮度。正常室內光線下,照明燈暗一些好。室內光線不足的環境中,可適當調亮照明燈。
2.3 垂直偏轉因數和水平偏轉因數
1.垂直偏轉因數選擇(VOLTS/DIV)和微調
在單位輸入信號作用下,光點在屏幕上偏移的距離稱為偏移靈敏度,這一定義對X軸和Y軸都適用。靈敏度的倒數稱為偏轉因數。垂直靈敏度的單位是為cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏轉因數的單位是V/cm,mV/cm或者V/DIV,mV/DIV。實際上因習慣用法和測量電壓讀數的方便,有時也把偏轉因數當靈敏度。
蹤示波器中每個通道各有一個垂直偏轉因數選擇波段開關。一般按1,2,5方式從 5mV/DIV到5V/DIV分為10檔。波段開關指示的值代表熒光屏上垂直方向一格的電壓值。例如波段開關置於1V/DIV檔時,如果屏幕上信號光點移動一格,則代表輸入信號電壓變化1V。
每個波段開關上往往還有一個小旋鈕,微調每檔垂直偏轉因數。將它沿順時針方向旋到底,處於「校準」位置,此時垂直偏轉因數值與波段開關所指示的值一致。逆時針旋轉此旋鈕,能夠微調垂直偏轉因數。垂直偏轉因數微調後,會造成與波段開關的指示值不一致,這點應引起注意。許多示波器具有垂直擴展功能,當微調旋鈕被拉出時,垂直靈敏度擴大若干倍(偏轉因數縮小若干倍)。例如,如果波段開關指示的偏轉因數是1V/DIV,採用×5擴展狀態時,垂直偏轉因數是0.2V/DIV。
在做數字電路實驗時,在屏幕上被測信號的垂直移動距離與+5V信號的垂直移動距離之比常被用於判斷被測信號的電壓值。
2.時基選擇(TIME/DIV)和微調
時基選擇和微調的使用方法與垂直偏轉因數選擇和微調類似。時基選擇也通過一個波段開關實現,按1、2、5方式把時基分為若干檔。波段開關的指示值代表光點在水平方向移動一個格的時間值。例如在1μS/DIV檔,光點在屏上移動一格代表時間值1μS。
「微調」旋鈕用於時基校準和微調。沿順時針方向旋到底處於校準位置時,屏幕上顯示的時基值與波段開關所示的標稱值一致。逆時針旋轉旋鈕,則對時基微調。旋鈕拔出後處於掃描擴展狀態。通常為×10擴展,即水平靈敏度擴大10倍,時基縮小到1/10。例如在2μS/DIV檔,掃描擴展狀態下熒光屏上水平一格代表的時間值等於

2μS×(1/10)=0.2μS

TDS實驗台上有10MHz、1MHz、500kHz、100kHz的時鍾信號,由石英晶體振盪器和分頻器產生,准確度很高,可用來校準示波器的時基。
示波器的標准信號源CAL,專門用於校準示波器的時基和垂直偏轉因數。例如COS5041型示波器標准信號源提供一個VP-P=2V,f=1kHz的方波信號。
示波器前面板上的位移(Position)旋鈕調節信號波形在熒光屏上的位置。旋轉水平位移旋鈕(標有水平雙向箭頭)左右移動信號波形,旋轉垂直位移旋鈕(標有垂直雙向箭頭)上下移動信號波形。
2.4 輸入通道和輸入耦合選擇
1.輸入通道選擇
輸入通道至少有三種選擇方式:通道1(CH1)、通道2(CH2)、雙通道(DUAL)。選擇通道1時,示波器僅顯示通道1的信號。選擇通道2時,示波器僅顯示通道2的信號。選擇雙通道時,示波器同時顯示通道1信號和通道2信號。測試信號時,首先要將示波器的地與被測電路的地連接在一起。根據輸入通道的選擇,將示波器探頭插到相應通道插座上,示波器探頭上的地與被測電路的地連接在一起,示波器探頭接觸被測點。示波器探頭上有一雙位開關。此開關撥到「×1」位置時,被測信號無衰減送到示波器,從熒光屏上讀出的電壓值是信號的實際電壓值。此開關撥到「×10"位置時,被測信號衰減為1/10,然後送往示波器,從熒光屏上讀出的電壓值乘以10才是信號的實際電壓值。
2.輸入耦合方式
輸入耦合方式有三種選擇:交流(AC)、地(GND)、直流(DC)。當選擇「地」時,掃描線顯示出「示波器地」在熒光屏上的位置。直流耦合用於測定信號直流絕對值和觀測極低頻信號。交流耦合用於觀測交流和含有直流成分的交流信號。在數字電路實驗中,一般選擇「直流」方式,以便觀測信號的絕對電壓值。
2.5 觸發
第一節指出,被測信號從Y軸輸入後,一部分送到示波管的Y軸偏轉板上,驅動光點在熒光屏上按比例沿垂直方向移動;另一部分分流到x軸偏轉系統產生觸發脈沖,觸發掃描發生器,產生重復的鋸齒波電壓加到示波管的X偏轉板上,使光點沿水平方向移動,兩者合一,光點在熒光屏上描繪出的圖形就是被測信號圖形。由此可知,正確的觸發方式直接影響到示波器的有效操作。為了在熒光屏上得到穩定的、清晰的信號波形,掌握基本的觸發功能及其操作方法是十分重要的。
1.觸發源(Source)選擇
要使屏幕上顯示穩定的波形,則需將被測信號本身或者與被測信號有一定時間關系的觸發信號加到觸發電路。觸發源選擇確定觸發信號由何處供給。通常有三種觸發源:內觸發(INT)、電源觸發(LINE)、外觸發EXT)。
內觸發使用被測信號作為觸發信號,是經常使用的一種觸發方式。由於觸發信號本身是被測信號的一部分,在屏幕上可以顯示出非常穩定的波形。雙蹤示波器中通道1或者通道2都可以選作觸發信號。
電源觸發使用交流電源頻率信號作為觸發信號。這種方法在測量與交流電源頻率有關的信號時是有效的。特別在測量音頻電路、閘流管的低電平交流噪音時更為有效。
外觸發使用外加信號作為觸發信號,外加信號從外觸發輸入端輸入。外觸發信號與被測信號間應具有周期性的關系。由於被測信號沒有用作觸發信號,所以何時開始掃描與被測信號無關。
正確選擇觸發信號對波形顯示的穩定、清晰有很大關系。例如在數字電路的測量中,對一個簡單的周期信號而言,選擇內觸發可能好一些,而對於一個具有復雜周期的信號,且存在一個與它有周期關系的信號時,選用外觸發可能更好。
2.觸發耦合(Coupling)方式選擇
觸發信號到觸發電路的耦合方式有多種,目的是為了觸發信號的穩定、可靠。這里介紹常用的幾種。
AC耦合又稱電容耦合。它只允許用觸發信號的交流分量觸發,觸發信號的直流分量被隔斷。通常在不考慮DC分量時使用這種耦合方式,以形成穩定觸發。但是如果觸發信號的頻率小於10Hz,會造成觸發困難。
直流耦合(DC)不隔斷觸發信號的直流分量。當觸發信號的頻率較低或者觸發信號的占空比很大時,使用直流耦合較好。
低頻抑制(LFR)觸發時觸發信號經過高通濾波器加到觸發電路,觸發信號的低頻成分被抑制;高頻抑制(HFR)觸發時,觸發信號通過低通濾波器加到觸發電路,觸發信號的高頻成分被抑制。此外還有用於電視維修的電視同步(TV)觸發。這些觸發耦合方式各有自己的適用范圍,需在使用中去體會。
3.觸發電平(Level)和觸發極性(Slope)
觸發電平調節又叫同步調節,它使得掃描與被測信號同步。電平調節旋鈕調節觸發信號的觸發電平。一旦觸發信號超過由旋鈕設定的觸發電平時,掃描即被觸發。順時針旋轉旋鈕,觸發電平上升;逆時針旋轉旋鈕,觸發電平下降。當電平旋鈕調到電平鎖定位置時,觸發電平自動保持在觸發信號的幅度之內,不需要電平調節就能產生一個穩定的觸發。當信號波形復雜,用電平旋鈕不能穩定觸發時,用釋抑(Hold Off)旋鈕調節波形的釋抑時間(掃描暫停時間),能使掃描與波形穩定同步。
極性開關用來選擇觸發信號的極性。撥在「+」位置上時,在信號增加的方向上,當觸發信號超過觸發電平時就產生觸發。撥在「-」位置上時,在信號減少的方向上,當觸發信號超過觸發電平時就產生觸發。觸發極性和觸發電平共同決定觸發信號的觸發點。
2.6 掃描方式(SweepMode)
掃描有自動(Auto)、常態(Norm)和單次(Single)三種掃描方式。
自動:當無觸發信號輸入,或者觸發信號頻率低於50Hz時,掃描為自激方式。
常態:當無觸發信號輸入時,掃描處於准備狀態,沒有掃描線。觸發信號到來後,觸發掃描。
單次:單次按鈕類似復位開關。單次掃描方式下,按單次按鈕時掃描電路復位,此時准備好(Ready)燈亮。觸發信號到來後產生一次掃描。單次掃描結束後,准備燈滅。單次掃描用於觀測非周期信號或者單次瞬變信號,往往需要對波形拍照。
上面扼要介紹了示波器的基本功能及操作。示波器還有一些更復雜的功能,如延遲掃描、觸發延遲、X-Y工作方式等,這里就不介紹了。示波器入門操作是容易的,真正熟練則要在應用中掌握。值得指出的是,示波器雖然功能較多,但許多情況下用其他儀器、儀表更好。例如,在數字電路實驗中,判斷一個脈寬較窄的單脈沖是否發生時,用邏輯筆就簡單的多;測量單脈沖脈寬時,用邏輯分析儀更好一些。 1.獲得基線:當操作者在使用無使用說明書的示波器時,首先要獲得一條最細的水平基線,然後才能用探頭進行其他測量,其具體方法如下:
(1)預置面板各開關、旋鈕。
亮度置適中,聚焦和輔助聚焦置適中,垂直輸入耦合置「AC,,,垂直電壓量程選擇置"5mv/div",垂直工作方式選擇置「CHl」,垂直靈敏度微調校準位置置「CAL",垂直通道同步源選擇置中間位置,垂直位置置中間位置,A和B掃描時間因數一起預置在「0.5ms/div",A掃描時間微調置校準位置「CAL』』,水平位移置中間位置,掃描工作方式置「A」,觸發同步方式置「AUTO",斜率開關置「+」
,觸發耦合開關置「AC』』,觸發源選擇置"INT"。
(2)按下電源開關,電源指示燈點亮。
(3)調節A亮度聚焦等有關控制旋鈕,可出現纖細明亮的掃描基線,調節基線使其位置於屏幕中間與水平坐標刻度基本重合。
(4)調節軌跡平行度控制使基線與水平坐標平行。
2.顯示信號:一般情況下,示波器本身均有一個0.5Vp—p標准方波信號輸出口,當獲得基線後,即可將探頭接到此處,此時屏幕應有一串方波信號,調節電壓量程和掃描時間因數旋鈕,方波的幅度和寬窄應變化,至此說明示波器基本調整完畢可以投入使用。
3.測量信號:將測試線接在CHl或CH2輸入插座,測試探頭觸及測試點,即可在示波器上觀察到波形。如果波形幅度太大或太小,可調整電壓量程旋鈕;如果波形周期顯示不適合,可調整掃描速度旋鈕。
三、特殊使用方法
1.交流峰值電壓測量
(1)獲得基線。
(2)調整V/div旋鈕,使波形在垂直方向顯示5div(即5格)。
(3)調節「A觸發電平」獲得穩定顯示。
(4)用以下公式計算峰值電壓。
電壓(p—p):垂直偏轉幅度/度x(VOLTS/div)/開關檔極x探極衰減倍率。
例如:測得上峰到下峰偏轉是5.6度,VOLTS/dir開關置0.5,用x10探極衰減倍率,將數據代人:電壓二5.6X0.5 X 10二28 V。
2.上升時間測量
上升時間:水平距離(度)x時間/度(檔極)/擴展系數。
例如:波形兩點間的距離為5度,時間/度檔級為1Us,x10擴展末擴展(即x1),將給定值代人:上升時I司;5X1/1;51xs。
3.相位差測量
相位差:水平差值(度)x水平刻度校準值(度/度)。
例如:水平差值為0.6度,每度校準到45度,將給定值代人公式:相位差:0.6x45:27。

⑥ 光譜分析儀的使用方法

使用方法:開機步驟

1、開光譜儀電源

2、開計算機電源

3、在文件管理器中用滑鼠指按UV WinLab圖標,此時出現UV WinLab的應用窗口,儀器已准備好,可選用適當方法進行分析操作。

一、方法:在分析中必須對分光光度計設定一些必要的參數,這些參數的組合就形成一個「方法」。Lambda系列UV WinLab軟體預設四類常用方法

1)掃描(SCAN),用以進行光譜掃描。

2)時間驅動(TIME DRIVER),用以觀察一定時間內某種特定波長處縱坐標值的變化,如酶動力學。

3)波長編程(WP)用以在多個波長下測定樣品在一定時間內的縱坐標值變化,並可以計算這些縱坐標值的差或比值。

4)濃度(CONC)用以建立標准曲線並測定濃度。

2.1 進入所需方法,在方法窗口中選擇所需方法的文件名。

二、方法的設定

掃描、波長編程及時間驅動各項方法可根據顯示的參數表,逐項按需要選用或填入,並可參考提示。

濃度

濃度方法窗口下方標簽較多,說明做濃度測定時需要參數較多。用滑鼠指按每一標簽,可翻出下頁,其上有一些需要測定的參數。必須逐頁設定。

三、工具條

1)SETUP

當所需的各項參數都已在參數中設好後,必須用滑鼠指按SETUP,才能將儀器調整到所設狀態。

2)AUTOZERO 用滑鼠指按此鍵,分光光度計即進行調零(在光譜掃描中則進行基線校正)。

3)START 用滑鼠指按此鍵,光度計即開始運行所設定的方法。

四、方法運行

1)掃描,時間驅動,波長編程方法選好後,先放入參比溶液,按AUTOZERO鍵,進行自自動校零或背景校正結束後再放入樣品,按START,分光光度計即開始進行,同時屏幕上出現圖形窗口,將結果顯示出來。

2)濃度

3)制訂標准曲線

(1)方法選好後,確認各項數據正確,特別是REFS頁中第一行要選中右上角的「edit mode」。再放入參比溶液,按AUTOZERO鍵自動校零或背景校正。

(2)按setup,待該圖標消失後,再按「start」,按提示依次放入標准色列的各管溶液,每次都按提示進行操作。

(3)標准色列測定完畢後,屏幕上出現calibgraphwindow,顯示擬合的標准線,並標出各項標准管的位置,屏幕下方還有一條ConcentraTIon mode的對話框,可以用來修改擬合的曲線類型(按 change calbraTIon),或修改標准溶液的任何一管(replace),或取消某一管(delete),或增加標准溶液管數(add)。如過已經滿意,則按analyse sample鍵,進入樣品測定窗口。

(4)標准曲線有關的各項數據,均在calibresultwindow中,可用滑鼠將其調出觀察。其中包括每個標准溶液的具體數據,標准曲線的回程方程式,相關系數,殘差。

五、樣品濃度測定

剛制定好的標准曲線接著進行樣品濃度測定時

1)只需在concentraTIon mode對話框按analyse sample鍵,進入樣品測定窗口。

2 )按設定的樣品順序放入各樣品管,每次按提示進行操作。

3 )屏幕上出現結果窗口,結果數據將依次顯示在樣品表中的相應位置。

(1)利用原有的標准曲線接著進行樣品濃度測定時

(2)調出所測定樣品的濃度方法文件,首先調出refs頁,將原設edit mode選項取消,改設左上角的using exiting calibration。重新將方法存檔,則今後再調用時即不需再作修改。

(3) 在sample頁中按要求重設各種樣品名稱機樣品信息。

(4)按工具條中setup鍵,將主機設到該方法所設定的條件。

(5)將參比溶液放入比色室,按autozero鍵做背景校零。

(6) 按start鍵,按設定的樣品順序放入各樣品管,每次按提示進行操作。

(7) 屏幕上出現結果窗口,結果數據將依次顯示在樣品表中相應位置。

六、關機

1)將方法及數據存檔

2)關閉方法窗

3)退出UV WinLab

4) 取出樣品及參比溶液

5)清潔光譜儀,特別是樣品室

6)關閉光譜電源

7)關閉計算機電源
根據現代光譜儀器的工作原理,光譜儀可以分為兩大類:經典光譜儀和新型光譜儀。經典光譜儀器是建立在空間色散原理上的儀器:新型光譜儀器是建立在調制原理上的儀器.經典光譜儀器都是狹縫光譜儀器。調制光譜儀是非空間分光的,它採用圓孔進光根據色散組件的分光原理,光譜儀器可分為:棱鏡光譜儀,衍射光柵光譜儀和干涉光譜儀.光學多道OMA(Optical Multi-channel Analyzer)是近十幾年出現的採用光子探測器(CCD)和計算機控制的新型光譜分析儀器,它集信息採集,處理,存儲諸功能於一體。由於OMA不再使用感光乳膠,避免和省去了暗室處理以及之後的一系列繁瑣處理,測量工作,使傳統的光譜技術發生了根本的改變,大大改善了工作條件,提高了工作效率:使用OMA分析光譜,測盆准確迅速,方便,且靈敏度高,響應時間快,光譜解析度高,測量結果可立即從顯示屏上讀出或由列印機,繪圖儀輸出.目前,它己被廣泛使用於幾乎所有的光譜測量,分析及研究工作中,特別適應於對微弱信號,瞬變信號的檢測。
光譜分析儀的分析原理是將光源輻射出的待測元素的特徵光譜通過樣品的蒸汽中待測元素的基態原子所吸收,由發射光譜被減弱的程度,進而求得樣品中待測元素的含量,它符合郎珀-比爾定律 A= -lg I/I o= -LgT = KCL 式中I為透射光強度,I0為發射光強度,T為透射比,L為光通過原子化器光程由於L是不變值所以A=KC。

物理原理

任何元素的原子都是由原子核和繞核運動的電子組成的,原子核外電子按其能量的高低分層分布而形成不同的能級,因此,一個原子核可以具有多種能級狀態。

能量最低的能級狀態稱為基態能級(E0=0),其餘能級稱為激發態能級,而能最低的激發態則稱為第一激發態。正常情況下,原子處於基態,核外電子在各自能量最低的軌道上運動。

如果將一定外界能量如光能提供給該基態原子,當外界光能量E恰好等於該基態原子中基態和某一較高能級之間的能級差E時,該原子將吸收這一特徵波長的光,外層電子由基態躍遷到相應的激發態,而產生原子吸收光譜。

電子躍遷到較高能級以後處於激發態,但激發態電子是不穩定的,大約經過10^-8秒以後,激發態電子將返回基態或其它較低能級,並將電子躍遷時所吸收的能量以光的形式釋放出去,這個過程稱原子發射光譜。可見原子吸收光譜過程吸收輻射能量,而原子發射光譜過程則釋放輻射能量。

⑦ 使用頻譜儀測試相位雜訊的操作步驟

使用頻譜儀測試相位雜訊測量不需要按步驟完成,只需要注意以下事項:

應盡量選用本底雜訊低的分析儀,因為所測量的相位雜訊下限取決於分析儀的本底雜訊。分析儀作為一種超外差的分析設備,最終的測量結果是外部輸入信號同本機內部本振信號疊加的結果,如果外部輸入信號的相位雜訊指標高於分析儀本身的指標,測量的結果實際是分析儀的相位雜訊。

只有外部信號的相位雜訊指標要比分析儀指標差時(差3dB以上),測量的結果才是正確的。直接頻譜法不適合於更低噪底的高性能晶振或者直接式頻綜的測試。

不論是使用分析儀的相位雜訊選件還是頻譜分析功能下手動測量,分析儀均不能把調幅雜訊和調頻雜訊區分開來,所以測量結果是調幅和調頻雜訊的總和。為了精確測量相位雜訊,一般要求被測信號的調幅雜訊要比調頻雜訊小得多(小10dB以上),測量結果基本為相位雜訊。

動態范圍代表了分析儀的測量范圍,其下限取決於分析儀自身靈敏度和相位雜訊,其上限取決於1dB壓縮點。在偏離載波較近處能達到的動態范圍的下限主要取決於分析儀自身的相位雜訊,在偏離載波較遠處分析儀自身的相位雜訊很低,動態范圍的下限主要取決於分析儀的靈敏度。

由於分析儀無載波抑制功能,測量的動態范圍受限,尤其是測量偏離載波較遠處的相噪時,需要判斷測量是否受限於分析儀的動態范圍,以免測量結果產生錯誤。

信號的頻譜漂移會給相噪量結果帶來很大的誤差,甚至無法測量。被測設備和測量儀器在測量進行前都需要充分預熱使其達到穩定的工作狀態,分析儀的預熱時間通常要求大於10分鍾。

儀器連接要牢固,盡量避免振動,測量時最好把儀器放置在能吸收振動的防振墊上,減少或者消除振顫雜訊。為了減少外界環境對測量結果的影響,有條件的地方最好在屏蔽室內測量。

(7)廣東相噪分析儀使用方法擴展閱讀:

常用的相位雜訊測量方法主要有直接頻譜分析儀法、相位檢波器法、鑒頻器法和雙通道互相關法等。應該指出,在不同場合對相位雜訊的要求不同,測量方法也有所不同。

典型的相位雜訊測量可以由專業相位雜訊測試系統完成,但這些專業設備的價格相當昂貴,而頻譜分析儀或者新一代的儀是相對常用的儀器,對一些相位雜訊指標要求不是很嚴格的場合,可以用信號/頻譜分析儀進行相位雜訊指標的測量。

通過譜分析進行相位雜訊測量的方法稱為直接頻譜分析儀法。該方法不僅能在分析儀上直接顯示相位雜訊的測量值,而且還可以同時准確地顯示是否有其他離散信號,具有簡單、靈活易用的特點。被測信號可以直接加到分析儀的射頻輸入口後,由分析儀直接進行分析測量;

也可以現將被測信號與相位雜訊指標更好的參考信號混頻後,得到一合適中頻信號,再由分析儀對這一中頻信號進行分析。

⑧ 怎樣使用頻譜分析儀、前置放大器和信號發生器測量雜訊系數

只用頻譜分析儀和前置放大器,就能作許多雜訊系數測量。只需用頻譜分析儀、前置放大器和信號發生器,就能覆蓋被測器件的頻率。這種方法的精度低於需要經校準雜訊源的Y因素技術,與所關注頻率的分析儀幅度精度相當。具體測量步驟為: 1. 把信號發生器和頻譜分析儀設置為所測雜訊系數的頻率,測量器件的增益。把該值標為Gain(D)。 2. 同樣方法測量前置放大器增益。把該值標為Gain(P)。 3. 斷開頻譜分析儀的任何輸入,把輸入衰減器設置為0dB。前置放大器輸入沒有任何連接。把它的輸出接到頻譜分析儀輸入。在作這一連接時,您會看到分析儀顯示的平均雜訊級的增加。 4. 把被測器件的輸入接至其特性阻抗,把輸出接到前置放大器輸入。此時分析儀顯示的雜訊級應增加。 5. 把頻譜分析儀視頻帶寬(VBW)設置為解析度帶寬的1%或更低。按標記功能(MKR FCTN)鍵,然後按Noise Marker On軟鍵。把標記放置在所要測雜訊系數的頻率上。讀以dBm/Hz為單位的標記雜訊功率密度讀數,把它標為Noise(O)。

⑨ 網路分析儀使用方法是什麼

首先設置頻率:按CENTER鍵(假如設置中心頻率為506M的濾波器,就直接設置為506M)。

在設置帶寬(顯示帶寬):按SPAN鍵,一般設置為100M。

再按CAL鍵 → CAL IBRATE MENU(第三個鍵) → RESPONSE(再第二個鍵) → THRU再按MARKER鍵設置第一個標記點,再按MARKER設置第二點,在依次內推(一般設置5個標記點。)

⑩ 手機分析儀怎麼

應該重視質量吧,阿亮正品,用的安心。

閱讀全文

與廣東相噪分析儀使用方法相關的資料

熱點內容
摩托車前叉連接方法 瀏覽:425
交流和直接的電流計算方法 瀏覽:463
龜田鍛煉身體的方法 瀏覽:764
曾仕強怎麼使自己開悟的方法 瀏覽:249
大拇指甲溝炎治療方法 瀏覽:909
高中數學解題方法技巧匯總 瀏覽:328
u盤擴展內存方法手機 瀏覽:34
除蟎包的最佳方法 瀏覽:22
瓷磚魚池漏水最簡單的補漏方法 瀏覽:14
智能化方法如何幫助開發軟體 瀏覽:360
卷閘門的開關安裝方法 瀏覽:793
汽車紐扣電池的安裝方法 瀏覽:890
鬥地主快速學會的方法 瀏覽:877
鋼梁安裝方法如何做撓度實驗 瀏覽:226
砂礫壓實度檢測方法 瀏覽:898
黑底白字解決方法 瀏覽:741
杭州電腦數據恢復方法 瀏覽:491
皮沙發的異味處理方法視頻 瀏覽:626
快速緩解頭痛的6個方法圖片 瀏覽:662
清除體內的氣有哪些方法 瀏覽:415