Ⅰ 根號的計算方法
分解該數字,並找出其中包含的完全平方數,將根號內部變成完全平方形式,再開方。如果該數字是偶數,除以2。尋找一個數的因數意味著尋找一切可以通過相乘得到該數字的數字,看看你是否可以繼續將它分解為因數的乘積。
(1)如果下面是個有理數,一般會選擇先化到整數,就是根號裡面上下都乘以分母,然後把分母先開根號開出來,然後在處理裡面的整數,一般是看出哪個因數的平方就把它先提出來,直接點的方式就是將那個整數寫成因式分解後的式子。
(2)如果下面也是無理數的話,比如√(4+2√3)的話,我沒什麼好辦法,就是靠感覺看了,比如給出的這個就等於1+√3,大概就是看看能不能湊成完全平方項的形式。我曾經試過假設展開後式子平方和原來比較來試圖解出方程,結果發現好和原來的還是差不多,你可以再試試。
(3)補充:如果下面是代數式的話,方法也差不多,因式分解後找到因式次數大於2的提出來一項,這樣就可以達到化簡後的式子,不過要注意的是開出來的部分是需要絕對值的。
根號簡介
根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
1、偶次根號下不能為負數,其運算結果也不為負。
2、奇次根號下可以為負數。
Ⅱ 開根號的公式
Excel表格中開百根號方法有多種。
這里介紹一種常用的,那就是在函數欄輸入「=(數值或表達式)^(1/開方數)」,實操如下:
1、新建一個Excel表格,為了方便演示並輸入度一定數據,如下圖。
(2)23開根號的計算方法擴展閱讀:
開平方的理論依據:
開平方是平方的逆運算,只要我們知道平方的計算方法,開平方就迎刃而解了。
我們令10位數值為A,個位數值為B,即為A*10+B,根據二數和的平方有:(Ax10+B)^2=(Ax10)^2+2(Ax10)xB+B^2=(A^2)x100+(20A+B)xB。
舉例說明:例359^2計算方法
1、3^2=9,
2、(20x3+5)x5=325,
3、(20*35+9)*9=6381,
4、將這些數,按兩位分節合起來:90000+32500+6381=128881。得359^2=128881。
Ⅲ 根號如何開方,如何計算
在實數范圍內,由於任何一個平方數都是非負數,所以負數都不能開平方。
開平方運算與開根號運算是有區別的。對於任何一個正數,開平方都有兩個值,比如說9的開平方是±3;而開根號是指求算術平方根,約定是取正數的結果,即√9=3。 當然0的開平方與開根號都只有一個值,等於0。
x²=a,x=正負根號下a,x³=b。
(3)23開根號的計算方法擴展閱讀:
有時候被開方數的項數較多,為了避免混淆,笛卡爾就用一條橫線把這幾項連起來,前面放上根號√ ̄(不過,它比路多爾夫的根號多了一個小鉤)就為現時根號形式。
立方根符號出現得很晚,一直到十八世紀,才在一書中看到符號 的使用,比如25的立方根用 表示。以後,諸如√ ̄等等形式的根號漸漸使用開來。
由此可見,一種符號的普遍採用是多麼地艱難,它是人們在悠久的歲月中,經過不斷改良、選擇和淘汰的結果,它是數學家們集體智慧的結晶,而不是某一個人憑空臆造出來的,也絕不是從天上掉下來的。按住ALT,然後按順序按41420(小鍵盤)就可以打出電腦中的根號「√」。
Ⅳ 根號怎麼計算
開方演算法:
先寫好數字作除式,比如42345.67
以小數點為分界線,2位一節,,那麼整數部分就是4,23,45
開出來的整數肯定是3位
第一位:先開最高位4,商處上2,左邊2,然後下面4-4=0
第二位:被除數入兩位即為023,除數是第一位乘以20即20*2=40
除數第一位是4,第二位空出,商是幾,那麼除數第二位就是幾,明顯 這里是0
第三位:被除數2345,除數40x,所以商是5,余數2345-405*5=320
小數部分第一位:被除數32067,除數405x,商7,余數32067-4057*7=3668
照此可以一直開下去,前四位是205.7,四捨五入後是205.8
根號8比這個簡單,你可以試一下
Ⅳ 數學開根號怎麼算
方法分類如下:
1.完全平方數
把任何含完全平方數的根式化簡。完全平方數是一個數乘以自己得到的數,比如81就是9*9得到的。要簡化,直接去掉根號,換成平方根數即可。
比如121就是完全平方數, 11 x 11= 121 你可直接把根號移掉,寫成11就可。要想更簡單點,你要記住下面的頭十二個數的完全平方數:1 x 1 = 1, 2 x 2 = 4, 3 x 3 = 9, 4 x 4 = 16, 5 x 5 = 25, 6 x 6 = 36, 7 x 7 = 49, 8 x 8 = 64, 9 x 9 = 81, 10 x 10 = 100, 11 x 11 = 121, 12 x 12 = 144。
2.完全立方數
把任何含完全立方數的根式化簡。完全立方數是一個數連續兩次乘以自己而得到的數,比如27就是3*3*3得到的。要簡化,直接去掉根號,換成立方根數即可。比如 512 就是完全立方數,因為8 x 8 x 8=512。 因此512的立方根就是8。
3.不能完全化簡的根式
(1)把被開方數拆成自己的乘數。乘數是相乘得到目標數的數字。比如5、4是20的一對乘數,要把不能完全化簡的根式中的數拆分成所有可能的乘數組合(太大的話就盡量多想),直到有完全平方數為止。
比如試著把所有的45乘數列出: 1, 3, 5, 9, 15, 和 45。 9 是一個乘數 ,亦是一個完全平方數。 9 x 5 = 45。
(2)把任何是完全平方數的乘數移出來。9是完全平方數(3*3),就把3提出來,根號里保留5。如果要把3放回去,就求平方得9再和5相乘得45。3根號5是根號45的簡化說法。
4.含有變數的根式
(1)找出完全平方式。a的二次方的平方根就是 a, a的三次方的平方根就是 a乘以根號 a。因為你加了個指數,用根號a乘以a就相當於根號下的a的三次方。因此這里的完全平方數就是「a」的平方。
Ⅵ 開根號的計算方法(手工計算)
任意數開立方根筆算步驟如下:
1、把所求數從右往左每3位分一段分成若干段,從左往右開始計算.
2、先從最左邊一段開始計算。用試演算法得出這段的得數(該得數要取其立方不溢出所求數第一段上的數時的最大數)設該得數為a
3、把第一段所求數與a^3的差,在其後面按位補上第二段的數,為第二段要算的數(所求數),取一個試算數b,在計算紙的其它地方第一行寫上3a^2,第二行往右移一位寫上3ab,第三行往右移一位寫上b^2,用豎式加法算出這三行數的和(上面兩行數,相應空位補上0).用這個和乘以試算數b所得的積與該段所求數進行比較.試算出最大的b(積不溢出所求數),該數b即為第二段上的得數.把該得數寫在算式相應段的上方。
4、相同的方法進行下一段的計算,所不同的是a要取前面已算出的得數,(如前面兩位得數分別是1,3,a就取13,如算到第四段,前面三位數分別是1,3,5,a就取135,)試算出相應的b寫在該段上方。
5、算到最後一段,如最後試算出來的余數不為0,則說明所求數的立方根不是整數,此時,用與求開方相似的方法,在該數後面補一段000,再算出的得數就是小數點後的第一位數,還有餘數,再補三位0,只到余數為0或者至算至足夠的小數位即可。
6、該演算法寫出來似乎很煩,但實際計算時並不復雜。可能會化點時間。當然,這都是在沒有辦法以的情況下才會用筆算進行開立方的。
希望對你有幫助。
Ⅶ 數學開根號怎麼算
開根號相對的運算是平方,其實開根號的計算方法就是按數的平方來推的。因為5的平方是25,所以根號下25等於5。
Ⅷ 開根號的計算方法是什麼
開根號就像求一個數的幾次方的反義詞一樣,比如3的2次方是9,那麼9開根號2就是3。
在中學階段,涉及開平方的計算,一是查數學用表,一是利用計算器。而在解題時用的最多的是利用分解質因數來解決。如化簡√1024,因為1024=2^10,所以。
√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.
根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
(8)23開根號的計算方法擴展閱讀:
根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。
指求一個數的方根的運算,為乘方的逆運算。數a的n(n為自然數)次方根指的是n方冪等於a的數,也就是適合b的n次方=a的數b。
Ⅸ 簡單開根號的詳細步驟
開平方法的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開分成幾段,表示所求平方根是幾位數。
2.根據左邊第一段里的數,求得平方根的最高位上的數。
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數。
4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商。
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試。
6.用同樣的方法,繼續求平方根的其他各位上的數。
(9)23開根號的計算方法擴展閱讀
開平方的理論依據:
開平方是平方的逆運算,只要我們知道平方的計算方法,開平方就迎刃而解了。
我們令10位數值為A,個位數值為B,即為A*10+B,根據二數和的平方有:(Ax10+B)^2=(Ax10)^2+2(Ax10)xB+B^2=(A^2)x100+(20A+B)xB。
舉例說明:例359^2計算方法
1、3^2=9,
2、(20x3+5)x5=325,
3、(20*35+9)*9=6381,
4、將這些數,按兩位分節合起來:90000+32500+6381=128881。得359^2=128881。
將這些計算步驟倒過來,就是開平方。同理,可以得開立方及N次方的方法。