『壹』 排列公式怎麼計算
不是,分子是從5開始遞減的兩個數字相乘,即5*4;分母為從1開始遞增的兩個數字,即1*2;所以結果為5*4÷(1*2)=10;
同理:c53=5*4*3÷(1*2*3)=10
c54=5*4*3*2÷(1*2*3*4)=5
『貳』 排列組合計算公式怎麼推的
推導:把n個不同的元素任選m個排序,按計數原理分步進行:取第一個:有n種取法;取第二個:有(n−1)種取法;取第三個:有(n−2)種取法;取第m個:有(n−m+1)種取法;根據分步乘法原理,得出公式。
從n個不同元素種取出m(m≤n)個元素的所有不同排列的個數,叫做從n個不同元素種取出m個元素的排列數,用符號Amn表示。
排列數 A(n,m) ----------即 字母A右下角n 右上角m, 表示n取m的排列數
A(n,m)=n!/(n-m)!=n*(n-1)*(n-2)*……*(n-m+1)
A(n,m)等於從n 開始連續遞減的 m 個自然數的積
組合數 C(n,m) ----------即 字母C右下角n 右上角m, 表示n取m的排列數
C(n,m)=n!/(m!*(n-m)!)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m)
C(n,m)等於(從n 開始連續遞減的 m 個自然數的積)除以(從1開始連續遞增的 m 個自然數的積)
『肆』 排列組合A幾幾的 C幾幾的怎麼算
計算方式如下:
C(r,n)是「組合」,從n個數據中選出r個,C(r,n)=n!/[r!(n-r)!]
A(r,n)是「選排列」,從n個數據中選出r個,並且對這r個數據進行排列順序,A(r,n)=n!/(n-r)!
A(3,2)=A(3,1)=(3x2x1)/1=6
C(3,2)=C(3,1)=(3x2)/(2x1)=3
排列有兩種定義,但計算方法只有一種,凡是符合這兩種定義的都用這種方法計算。
定義的前提條件是m≦n,m與n均為自然數。
1、從n個不同元素中,任取m個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。
2、從n個不同元素中,取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數。
3、用具體的例子來理解上面的定義:4種顏色按不同顏色,進行排列,有多少種排列方法,如果是6種顏色呢。從6種顏色中取出4種進行排列呢。
解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。
A(6,6)=6x5x4x3x2x1=720。
A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。
『伍』 排列組合的計算公式是怎樣的要詳細點的
排列 公式 是 用A來表示的 , 老版教材 是用P的 An m(m是上標) =n的階乘/(n-m)的階乘 組合的公式 是用C來表示 的 http://ke..com/view/738955.htm 排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列. 組合:從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從 n個不同元素中取出m個元素的一個組合. 舉個例子,從甲乙丙丁 4人中選擇3人 如果是排列的話,甲乙丙 與 甲丙乙 乙丙甲 乙甲丙 丙甲乙 丙乙甲 是不相同的 ,就是說要考慮先後順序 A4 (3是上標) =24 如果是組合的話,甲乙丙 與 甲丙乙 乙丙甲 乙甲丙 丙甲乙 丙乙甲 都是 甲乙丙這3個人,不考慮先後順序, C4(3 上標 )4種方法