『壹』 急求指數函數和對數函數的運算公式
指數函數的運算公式:
1、
通常我們將以10為底的對數叫常用對數(common logarithm),並把log10N記為lgN。另外,在科學計數中常使用以無理數e=2.71828···為底數的對數,以e為底的對數稱為自然對數(natural logarithm),並且把logeN記為In N。
(1)a4求ab的計算方法擴展閱讀
同底的對數函數與指數函數互為反函數。
當a>0且a≠1時,ax=N。
x=㏒aN。
關於y=x對稱。
對數函數的一般形式為 y=㏒ax,它實際上就是指數函數的反函數(圖象關於直線y=x對稱的兩函數互為反函數),可表示為x=ay。
因此指數函數里對於a的規定(a>0且a≠1),右圖給出對於不同大小a所表示的函數圖形:關於X軸對稱、當a>1時,a越大,圖像越靠近x軸、當0<a<1時,a越小,圖像越靠近x軸。
可以看到,對數函數的圖形只不過是指數函數的圖形的關於直線y=x的對稱圖形,因為它們互為反函數。
『貳』 把a4紙上兩點ab連接起來 有幾種方式
無數種
連接兩點可以有無數種方式,無論直線曲線,有很多種軌跡,因此有無數種方法
A4紙是由國際標准化組織的ISO216定義的,規格為21cm×29.7cm(210mm×297mm),世界上多數國家所使用的紙張尺寸都是採用這一國際標准。這個標准最初是被魏瑪共和國在1922年納入DIN(編號是DIN476),雖然其中一些格式法國在同一時期也自行研發出來,不過之後就被遺忘了。ISO216定義了A、B、C三組紙張尺寸。C組紙張尺寸主要使用於信封。
『叄』 五位數A435B能被36整除,求AB是多少
這個可以試算的,A與B一組一組試,從1到9。看有幾組是整除的。
44352,94356符合要求。所以AB是
42或96
『肆』 忘了怎麼求了 計算行列式的值 計算過程要詳細 a b b b a b a b a a b a b b b a
ri-r1,i=2,3,4
a b b b
0 0 a-b 0
0 a-b 0 a-b
b-a 0 0 a-b
c4+c1-c2
a b b a
0 0 a-b 0
0 a-b 0 0
b-a 0 0 0
= a(a-b)(a-b)(b-a)
= a(b-a)^3.
第2題, 根據行列式的定義, 每行每列恰取一個元素相乘
所以 第3,4行必取一個0
故行列式等於0.
『伍』 如果a=4, b是正數,那麼a+ b=___.
練習一(B級)
(一)計算題:
(1)23+(-73)
(2)(-84)+(-49)
(3)7+(-2.04)
(4)4.23+(-7.57)
(5)(-7/3)+(-7/6)
(6)9/4+(-3/2)
(7)3.75+(2.25)+5/4
(8)-3.75+(+5/4)+(-1.5)
(二)用簡便方法計算:
(1)(-17/4)+(-10/3)+(+13/3)+(11/3)
(2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,
求:(-X)+(-Y)+Z的值
(四)用「>「,「0,則a-ba (C)若ba (D)若a<0,ba
(二)填空題:
(1)零減去a的相反數,其結果是_____________; (2)若a-b>a,則b是_____________數; (3)從-3.14中減去-π,其差應為____________; (4)被減數是-12(4/5),差是4.2,則減數應是_____________; (5)若b-a<-,則a,b的關系是___________,若a-b<0,則a,b的關系是______________; (6)(+22/3)-( )=-7
(三)判斷題:
(1)一個數減去一個負數,差比被減數小. (2)一個數減去一個正數,差比被減數小. (3)0減去任何數,所得的差總等於這個數的相反數. (4)若X+(-Y)=Z,則X=Y+Z (5)若a<0,b|b|,則a-b>0
練習二(B級)
(一)計算:
(1)(+1.3)-(+17/7)
(2)(-2)-(+2/3)
(3)|(-7.2)-(-6.3)+(1.1)|
(4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.
(三)若a,b為有理數,且|a|<|b|試比較|a-b|和|a|-|b|的大小
(四)如果|X-1|=4,求X,並在數軸上觀察表示數X的點與表示1的點的距離.
練習三(A級)
(一)選擇題:
(1)式子-40-28+19-24+32的正確讀法是( )
(A)負40,負28,加19,減24與32的和 (B)負40減負28加19減負24加32 (C)負40減28加19減24加32 (D)負40負28加19減24減負32
(2)若有理數a+b+C<0,則( )
(A)三個數中最少有兩個是負數 (B)三個數中有且只有一個負數 (C)三個數中最少有一個是負數 (D)三個數中有兩個是正數或者有兩個是負數
(3)若m<0,則m和它的相反數的差的絕對值是( )
(A)0 (B)m (C)2m (D)-2m
(4)下列各式中與X-y-Z訴值不相等的是( )
(A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z)
(二)填空題:
(1)有理數的加減混合運算的一般步驟是:(1)________;(2)_________;(3)________ _______;(4)__________________. (2)當b0,(a+b)(a-1)>0,則必有( ) (A)b與a同號 (B)a+b與a-1同號 (C)a>1 (D)b1 (6)一個有理數和它的相反數的積( ) (A)符號必為正 (B)符號必為負 (C)一不小於零 (D)一定不大於零 (7)若|a-1|*|b+1|=0,則a,b的值( ) (A)a=1,b不可能為-1 (B)b=-1,a不可能為1 (C)a=1或b=1 (D)a與b的值相等 (8)若a*B*C=0,則這三個有理數中( ) (A)至少有一個為零 (B)三個都是零 (C)只有一個為零 (D)不可能有兩個以上為零
(二)填空題:
(1)有理數乘法法則是:兩數相乘,同號__________,異號_______________,並把絕對值_____, 任何數同零相乘都得__________________. (2)若四個有理數a,b,c,d之積是正數,則a,b,c,d中負數的個數可能是______________; (3)計算(-2/199)*(-7/6-3/2+8/3)=________________; (4)計算:(4a)*(-3b)*(5c)*1/6=__________________; (5)計算:(-8)*(1/2-1/4+2)=-4-2+16=10的錯誤是___________________; (6)計算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10/7)*(-7/10)]=-1的根據是_______
(三)判斷題:
(1)兩數之積為正,那麼這兩數一定都是正數; (2)兩數之積為負,那麼這兩個數異號; (3)幾個有理數相乘,當因數有偶數個時,積為正; (4)幾個有理數相乘,當積為負數時,負因數有奇數個; (5)積比每個因數都大.
練習(四)(B級)
(一)計算題:
(1)(-4)(+6)(-7)
(2)(-27)(-25)(-3)(-4)
(3)0.001*(-0.1)*(1.1)
(4)24*(-5/4)*(-12/15)*(-0.12)
(5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7)
(6)(-24/7)(11/8+7/3-3.75)*24
(二)用簡便方法計算:
(1)(-71/8)*(-23)-23*(-73/8)
(2)(-7/15)*(-18)*(-45/14)
(3)(-2.2)*(+1.5)*(-7/11)*(-2/7)
(三)當a=-4,b=-3,c=-2,d=-1時,求代數式(ab+cd)(ab-cd)的值.
(四)已知1+2+3+......+31+32+33=17*33,計算下式
1-3+2-6+3-9-12+...+31-93+32-96+33-99的值
練習五(A級)
(一)選擇題:
(1)已知a,b是兩個有理數,如果它們的商a/b=0,那麼( )
(A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0
(2)下列給定四組數1和1;-1和-1;0和0;-2/3和-3/2,其中互為倒數的是( )
(A)只有 (B)只有 (C)只有 (D)都是
(3)如果a/|b|(b≠0)是正整數,則( )
(A)|b|是a的約數 (B)|b|是a的倍數 (C)a與b同號 (D)a與b異號
(4)如果a>b,那麼一定有( )
(A)a+b>a (B)a-b>a (C)2a>ab (D)a/b>1
(二)填空題:
(1)當|a|/a=1時,a______________0;當|a|/a=-1時,a______________0;(填>,0,則a___________0; (11)若ab/c0,則b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3 (C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106 (4)若a為有理數,且a2>a,則a的取值范圍是( ) (A)a<0 (B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科學記數法表示106000,其中正確的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,則123.63等於( ) (A)1888 (B)18880 (C)188800 (D)1888000 (7)若a是有理數,下列各式總能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8)計算:(-1)1-(-2)2-(-3)3-(-4)4所得結果是( ) (A)288 (B)-288 (C)-234 (D)280
(二)填空題:
(1)在23中,3是________,2是_______,冪是________;若把3看作冪,則它的底數是________,
指數是________; (2)根據冪的意義:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等於36/49的有理數是________;立方等於-27/64的數是________ (4)把一個大於10的正數記成a*10n(n為正整數)的形成,a的范圍是________,這里n比原來的整
數位數少_________,這種記數法稱為科學記數法; (5)用科學記數法記出下面各數:4000=___________;950000=________________;地球
的質量約為49800...0克(28位),可記為________; (6)下面用科學記數法記出的數,原來各為多少 105=_____________;2*105=______________; 9.7*107=______________9.756*103=_____________ (7)下列各數分別是幾位自然數 7*106是______位數 1.1*109是________位數; 3.78*107是______位數 1010是________位數; (8)若有理數m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代數式(a+2)2+5取得最小值時的a值為( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0 (B)b-a>0 (C)a,b互為相反數; (D)-ab (C)a
(5)用四捨五入法得到的近似數1.20所表示的准確數a的范圍是( )
(A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列說法正確的是( ) (A)近似數3.80的精確度與近似數38的精確度相同; (B)近似數38.0與近似數38的有效數字個數一樣 (C)3.1416精確到百分位後,有三個有效數字3,1,4; (D)把123*102記成1.23*104,其有效數字有四個.
(二)填空題:
(1)寫出下列由四捨五入得到的近似值數的精確度與有效數字: (1)近似數85精確到________位,有效數字是________; (2)近似數3萬精確到______位,有效數字是________; (3)近似數5200千精確到________,有效數字是_________; (4)近似數0.20精確到_________位,有效數字是_____________. (2)設e=2.71828......,取近似數2.7是精確到__________位,有_______個有效數字;
取近似數2.7183是精確到_________位,有_______個有效數字. (3)由四捨五入得到π=3.1416,精確到0.001的近似值是π=__________; (4)3.1416保留三個有效數字的近似值是_____________;
(三)判斷題:
(1)近似數25.0精確以個痊,有效數字是2,5; (2)近似數4千和近似數4000的精確程度一樣; (3)近似數4千和近似數4*10^3的精確程度一樣; (4)9.949精確到0.01的近似數是9.95.
練習八(B級)
(一)用四捨五入法對下列各數取近似值(要求保留三個有效數字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079
(二)用四捨五入法對下列各數取近似值(要求精確到千位): (1)37890.6 (2)213612.4 (3)1906.57
(三)計算(結果保留兩個有效數字): (1)3.14*3.42 (2)972*3.14*1/4
練習九
(一)查表求值:
(1)7.042 (2)2.482 (3)9.52 (4)2.0012 (5)123.42 (6)0.12342 (7)1.283 (8)3.4683 (9)(-0.5398)3 (10)53.733
(二)已知2.4682=6.901,不查表求24.682與0.024682的值
(三)已知5.2633=145.7,不查表求
(1)0.52633 (2)0.05263 (3)52.632 (4)52633
(四)已知21.762^2=473.5,那麼0.0021762是多少 保留三個有效數字的近似值是多少
(五)查表計算:半徑為77cm的球的表面積.(球的面積=4π*r2