Ⅰ 乘法和除法的簡便運算
特殊數字的簡便運算
1、特殊數字的簡便運算是指含有5,2或它們倍數的乘法運算,例如2x4x5x25這樣的乘法運算,可以寫成2x5x4x25=10x100=1000.
2、有些數字雖然不是2和5之類的數,但是可以寫成因數相乘的形式,便於乘法運算。例如624x125=2x2x2x2x39x5x5x5=2x5x2x5x2x5x2x39=78000
3、需要記住2x5=10,4x25=100,8x125=1000這些常見的快速運算的式子。
首數相同尾數互補的乘法
1、尾數互補是指兩個數的十位相同,尾數相加等於10,例如72x78就屬於這一類。這種運算是初中所用到的十字相乘法有關,在小學范圍只要知道方法,直接使用就可以。
2、它的運算方法是十位相乘,作為乘積的前兩位。尾數相乘作為乘積的後兩位,一定要注意特例,如果兩個數中一個尾數是1,另一個尾數是9,這個時候十位要補個0例如61x69,答案不是369,乃是3609。
3、如果是三位數的話,前兩位相乘,後面個位相乘直接放在後面,例如242x248,前面應該是24x25=600,後面應該是2x8=16,運算結果應該是60016。
小數除法的簡便運算
小數除法的簡便計算與整數除法的簡便計算一樣,用到的是除法性質。
除法性質1、A ÷ B ÷ C = A ÷ ( B × C )
如:42÷2.8 =42÷( 0.7 × 4 )= 42 ÷ 0.7 ÷ 4 = 60 ÷ 4 = 15
如:420÷2.5÷4 = 420÷(2.5×4 )= 420 ÷ 10 = 42
除法性質2、 (a-b)÷c=a÷c-b÷c
除法性質3、 A ÷ ( B ÷ C ) = A ÷ B × C
除法性質4、 A × ( B ÷ C ) = A × B ÷ C
Ⅱ 數學乘除法的簡便計算方法
簡便計算方法例子67×16+67×74
解題思路:四則運算規則(按順序計算、先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
67×16+67×74
=67×(16+74)
=67×90
=6030
存疑請追問滿意請採納
Ⅲ 小學四年級數學除法怎樣簡便計算
四年級數學除法簡便運算技巧如下:
①乘法的簡便演算法:
兩個數相乘,如果其中一個因數是25(或125),可考慮將另一個因數分解成4×( )或8×( ),再運用乘法結合律進行簡便計算;如果其中一個因數接近整十數、整百數、整千數……可將其分解成10±( )、100±( )、1000±( ) ……再運用乘法分配律進行簡便計算。
②除法的運算性質:
一個數連續除以兩個數,等於這個數除以這兩個數的積。用字母表示為:a÷b÷c=a÷(b×c)。
兩個數相除,如果除數分解成的因數恰好與被除數成倍數關系,那麼可以利用a÷( b×c )= a÷b÷c來解決。
一個數連續除以兩個數,交換除數的位置,商不變。用字母表示為a÷b÷c= a÷c÷b
在乘除法的簡便運算過程當中進行實際應用時,我們要根據數字的特點來選擇合適的簡便運算,不能生搬硬套才能使簡便的過程更加符合我們簡便的要求。最基本的方法就是對乘除法的運算定律能夠運用自如。
不管是正向的運算定律應用還是逆向的推倒,這都是大家對數字的充分認識,很多同學對於字母表示的運算定律倒背如流,但是在實際的數字運算過程當中,卻找不到符合的運算定律,進行簡便運算,這就是在實際應用當中的熟練度和對運算定律的了解不夠深刻。
其次,對於除法的簡便運算,我們最核心的內容就是除法的性質,一個數連續除以兩個數等於個個數,除以後兩個數的積。或者是聯儲過程當中,我們通過交換除數的位置已達到簡便運算的目的。
在計算時我們並沒有進行硬性的要求,其主要的簡便還是基於對數字,但觀察符合時才能應用其進行簡便運算,否則按照從左到右的順序計算即可。
通過以上對乘除法簡便運算的充分了解,以及常考題型當中其運算的技巧的思路分析下邊我們將通過這些比較典型的代表題型。看在實際應用當中,其方法和技巧的特點都有哪些?以便為大家理解其簡便的目的,打下堅實的基礎。
通過以上對典型題型的計算,簡便的分析以及技巧的總結。乘除法的簡便運算可遵循其運算的定律進行計算,但是在實際的運算過程當中,想要熟練掌握這些內容,還是要通過大量的練習來進行鞏固的,那麼以下的練習能夠幫助大家。
寫在最後:乘除法的簡便計算,除了對數字的認真觀察以外,乘法和除法涉及到的運算定律以及運算的技巧是大家重點關注的對象,只有在不斷的實踐當中把運算的定律和技巧能夠運用熟練,那麼其計算的效率才會得到真正的提高。
在實際的應用當中,根據數字的特點選擇合適的運算技巧,這是大家通過大量訓練才能得出的,理論加實踐才能使自己得到真正的提升。
Ⅳ 小學生簡便運算
小學生簡便運算以下是一些常見的小學生簡便運算技巧:
快速加法:利用補數法,如計算8 + 6,可以先將6補成10,得到8 + 10 = 18,再減去2,即 18 - 2 = 16。這樣可以快速計算出8 + 6的結果。換位加法:對於兩個兩位數相加的題目,可以先將十位數相加,再將個位數相加。例如,將27 + 38轉化為20 + 30 和 7 + 8,得到結果的十位數是5,個位數是5,所以答案是55。
還有其他一些值得考慮的技巧和方法:
分拆法:對於較大的數字相加或相減,可以將它們拆分成更容易計算的部分。例如,計算37 + 48可以分解為30 + 40 和 7 + 8,然後將結果相加。
乘法的交換律:乘法滿足交換律,即a × b = b × a。因此,當計算時可以根據方便的數字順序進行計算。例如,計算4 × 5可以改為計算5 × 4。