乘法公式:因數x因數=積;積÷因數=因數。除法公式:被除數÷除數=商;商x除數=被除數;被除數÷商=除數。乘除法運演算法則:1、同級運算時,物鍵從左到右依次計算。2、兩級運算時,先算乘除,後算加減。3、有括弧時,先算括桐螞尺號裡面的,再算括弧外面的。4、有多層括弧時,先算小括弧里的,再算中括弧裡面的,再算大括弧裡面的,最後算括弧外面的。乘法是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。整數(包括負數)、有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。矩形的區域不取決於首先測量哪一側,這說明了交換屬性。兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。除法是四則運算之一。已知兩個因數的積與其中一個非零因數,求局高另一個因數的運算叫做除法。兩個數相除又叫做兩個數的比。若ab=c(b≠0),用積數c和因數b來求另一個因數a的運算就是除法,寫作c÷b,讀作c除以b(或b除c)。其中c叫做被除數,b叫做除數,運算的結果a叫做商。
B. 小學數學簡便計算公式大全
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括弧,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算復雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷cxb(c不等於0);
以上公式是解四則運算題目的基本關系式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。
C. 四年級乘,除法的簡便方法怎麼算
一、乘法:
1.因數含有25和125的算式:
例如①:25×42×4
我們牢記25×4=100,所以交換因數位置,使算式變為25×4×42.
同樣含有因數125的算式要先用125×8=1000。
例如②:25×32
此時我們要根據25×4=100將32拆成4×8,原式變成25×4×8。
例如③:72×125
我們根據125×8=1000將72拆成8×9,原式變成8×125×9。
重點例題:125×32×25
=(125×8)×(4×25)
2.因數含有5或15、35、45等的算式:
例如:35×16
我們根據需要將16拆分成2×8,這樣原式變為35×2×8。因為這樣就可以先得出整十的數,運算起來比較簡便。
3.乘法分配率的應用:
例如:56×32+56×68
我們注意加號兩邊的算式中都含有56,意思是32個56加上68個56的和是多少,於是可以提出56將算式變成56×(32+68)
如果是56×132—56×32
一樣提出56,算是變成56×(132-32)
注意:56×99+56
應想99個56加上1個56應為100個56,所以原式變為56×(99+1)
或者56×101-56
=56×(101-1)
另外注意綜合運用,例如:
36×58+36×41+36
=36×(58+41+1)
47×65+47×36-47
=47×(65+36-1)
4.乘法分配率的另外一種應用:
例如:102×47
我們先將102拆分成100+2
算式變成(100+2)×47
然後注意將括弧里的每一項都要與括弧外的47相乘,算式變為:
100×47+2×47
例如:99×69
我們將99變成100-1
算式變成(100-1)×69
然後將括弧里的數分別乘上69,注意中間為減號,算式變成:
100×69-1×69
二、除法:
1.連續除以兩個數等於除以這兩個數的乘積:
例如:32000÷125÷8
我們可以將算式變為32000÷(125×8)=32000÷1000
2.例如:630÷18
我們可以將18拆分成9×2
這時原式變為630÷(9×2)
注意要加括弧,然後打開括弧,原式變成630÷9÷2=70÷2
三、乘除綜合:
例如6300÷(63×5)
我們需要打開括弧,此時要將括弧里的乘號變為除號,原式變為
6300÷63÷5
D. 如何速算
乘法中的速算和巧算
1.直接利用乘法結合律的速算
利用乘法結合律,可以把兩個因數相乘積是整十、整百、整千的先進行計算,使計算簡便。為了計算迅速,可以把有些較常用的乘法算式記熟,例如:25×4=100,125×8=1000,12×5=60,……
例1 計算236×4×25
解:236×4×25
=236×(4×25)
=236×100
=23600
2.乘法交換律、結合律同時運用的速算
幾個因數相乘,先交換因數的位置,使因數相乘積為整十、整百、整千的湊在一起,根據結合律分組計算比較簡便。
例2 125×2×8×25×5×4
解:原式=(125×8)×(25×4)×(5×2)
=1000×100×10
=1000000
3.直接利用乘法分配律的簡算
例3 計算:
(1)175×34×175×66
(2)67×12+67×35+67×52+67
解:(1)根據乘法分配律:
原式=175×(34+66)
=175×100
=17500
(2)把67看作 67×1後,利用乘法分配律簡算。
原式=67×(12+35+52+1)
=67×100
=6700
4.把一個因數拆分成兩個因數,利用交換律、結合律進行巧算。
例4 計算(1)28×25
(2)48×125
(3)125×5×32×5
解:(1)原式=4×7×25
=7×(4×25)
=7×100
=700
(2)原式=6×8×125=6×(8×125)
=6×1000
=6000
(3)原式=125×8×4×5×5
=(125×8)×(4×25)
=1000×100
=100000
5.間接利用乘法分配律進行巧算
例5 計算(1)26×99
(2)1236×199
(3)713×101
解:(1)由99=100-1,
原式=26×(100-1)
=26×100-26×1
=2600-26
=2574
(2)由199=200-1,
原式=1236×(200-1)
=1236×200-1236×1
=247200-1236
=246000-36
=245964
(3)原式=713×(100+1)
=713×100+713×1
=71300+713
=72013
6.幾種常見的特殊因數乘積的巧算
(1)任何一個自然數乘以0,其積都等於0。
例6 計算1326+427×9×42×0-315
解:原式=1326+0-315
=1011
(2)在乘法算式中,任何一個數乘以1,還得原來的數。
例7 8736×49+8736×40-8736×88
解:根據乘法分配律,
原式=8736×(49+40-88)
=8736×1
=8736
(3)求一個數乘以5的積
例8 計算12864732×5
解:一個數乘以5,實際上就是乘以10的一半,因此可以把被乘數末尾添上一個0(擴大10倍),再把所得的數除以2(減半)即可。
原式=128647320÷2
=64323660
(4)求一個數乘以11的積
例9 13254638×11
解:把被乘數依次排開,先寫上這個數首尾兩數字,中間再添上相鄰兩數之和(夠10進1),就是這個數乘以11的積。
13254638×11=145801018
同學們把這種乘以11的速算總結成一句話,叫作「兩邊一拉,中間相加」。
(5)求十幾乘以十幾的積
例10 計算18×12
解:如果兩個因數都是十幾的數,可以用一個因數加上另一個因數個位上的數,乘以10,再加上它們個位數的積。
原式=(18+2)×10+2×8
=200+16
=216