導航:首頁 > 計算方法 > 幾何壓軸計算方法

幾何壓軸計算方法

發布時間:2024-02-04 19:54:46

1. 解析幾何,求解

高中數學解析幾何運算,很多同學突破不了,然而解析幾何的題對高考的佔比又很大。老師在這里總結一些解題技巧。
高中數學解析幾何解題方法我們先來分析一下解析幾何高考的命題趨勢:
(1)題型穩定:近幾年來高考解析幾何試題一直穩定在三(或二)個選擇題,一個填空題,一個解答題上,占總分值的20%左右。
(2)整體平衡,重點突出:其中對直線、圓、圓錐曲線知識的考查幾乎沒有遺漏,通過對知識的重新組合,考查時既留意全面,更留意突出重點,對支撐數學科知識體系的主幹知識,考查時保證較高的比例並保持必要深度。近幾年新教材高考對解析幾何內容的考查主要集中在如下幾個類型:
① 求曲線方程(類型確定、類型未定);
②直線與圓錐曲線的交點題目(含切線題目);
③與曲線有關的最(極)值題目;
④與曲線有關的幾何證實(對稱性或求猜沒陵對稱曲線、平行、垂直);
⑤探求曲線方程中幾何量及參數間的數目特徵;
(3)能力立意,滲透數學思想:一些雖是常見的基本題型,但假如藉助於數形結合的思想,就能快速正確的得到答案。
(4)題型新奇,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處於壓軸題的位置,計算量減少,思考量增大。加大與相關知識的聯系(如向量、函數、方程、不等式等),凸現教材中研究性學習的能力要求。加大探索性題型的分量。
在近年高考中,對直線與圓內容的考查主要分兩部分:
(1)以選擇題題型考查本章的基本概念和性質,此類題一般難度不大,但每年必考,考查內容主要有以下幾類:
①與本章概念(傾斜角、斜率、夾角、間隔、平行與垂直、線性規劃等)有關的題目;
②對痴光目(包括關於點對稱,關於直線對稱)要熟記解法;
③與圓的位置有關的題目,其常規方法是研究圓心到直線的間隔.
以及其他「標准件」類型的基礎題。
(2)以解答題考查直線與圓錐曲線的位置關系,此類題綜合性比較強,難度也較大。
預計在今後一、二年內,高考對本章的考查會保持相對穩定,即在題型、題量、難度、重點考查內容等方面不會有太大的變化。
相比較而言,圓錐曲線內容是平面解析幾何的核心內容,因而是高考重點考查的內容,在每年的高考試卷中一般有2~3道客觀題和一道解答題,難度上易、中、難三檔題都有,主要考查的內容是圓錐曲線的概念和性質,直線與圓錐的位置關系等,從近十年高考試題看大致有以下三類:
(1)考查圓錐曲線的概念與性質;
(2)求曲線方程和求軌跡;
(3)關於直線與圓及圓錐曲線的位置關系的題目.
選擇題主要以橢圓、雙曲線為考查對象,填空題以拋物線為考查對象,解答題以考查直線與圓錐曲線的位置關系為主,對於求曲線方程和求軌跡的題,高考一般不給出圖形,以考查學生的想像能力、分穗戚析題目的能力,從而體現解析幾何的基本思想和方法,圓一般不單獨考查,總是與直線、圓錐曲線相結合的綜合型考題,等軸雙曲線基本不出題,坐標軸平移或平移化簡方程一般不出解答題,大多是以選擇題形式出現.解析幾何的解答題一般為困難,近兩年都考查了解析幾何的基本方法——坐標法以及二次曲線性質的運用的命題趨向要引起我們的重視.
請同學們留意圓錐曲線的定義在解題中的應用,留意解析幾何所研究的題目背景平面幾何的一些性質.從近兩年的試題看,解析幾何題有前移的趨勢,這就要求考生在基本概念、基本方法、基本技能上多下功夫.參數方程是研究曲線的輔助工具.高考試題中,涉及較多的是參數方程與普通方程互化及等價變換的數學思想方法。
考查的重點要落在軌跡方程、直線與圓錐曲線的位置關系,往往是通過直線與圓錐曲線方程的聯立、消元,藉助於韋達定理代人、向量搭橋建立等量關系。考查題型涉及的知識點察差題目有求曲線方程題目、參數的取值范圍題目、最值題目、定值題目、直線過定點題目、對痴光目等,所以我們要把握這些題目的基本解法。
命題特別留意對思維嚴密性的考查,解題時需要留意考慮以下幾個題目:
1、設曲線方程時看清焦點在哪條坐標軸上;留意方程待定形式及參數方程的使用。
2、直線的斜率存在與不存在、斜率為零,相交題目留意「D」的影響等。
3、命題結論給出的方式:搞清題目所給的幾個小題是並列關系還是遞進關系。假如前後小題各自有強化條件,則為並列關系,前面小題結論後面小題不能用;不過考題經常給出的是遞進關系,有(1)、第一問求曲線方程、第二問討論直線和圓錐曲線的位置關系,(2)第一問求離心率、第二問結合圓錐曲線性質求曲線方程,(3)探索型題目等。解題時要根據不同情況考慮施加不同的解答技巧。
4、題目條件如與向量知識結合,也要留意向量的給出形式:
(1)、直接反映圖形位置關系和性質的,如?=0,=( ),λ,以及過三角形「四心」的向量表達式等;
(2)、=λ:假如已知M的坐標,按向量展開;假如未知M的坐標,按定比分點公式代進表示M點坐標。
(3)、若題目條件由多個向量表達式給出,則考慮其圖形特徵(數形結合)。
5、考慮圓錐曲線的第一定義、第二定義的區別使用,留意圓錐曲線的性質的應用。
6、留意數形結合,特別留意圖形反映的平面幾何性質。
7、解析幾何題的另一個考查的重點就是學生的基本運算能力,所以解析幾何考題學生普遍感覺較難對付。為此我們有必要在平常的解題變形的過程中,發現積累一些式子的常用變形技巧,如假分式的分離技巧,對痴規換的技巧,構造對稱式用韋達定理代進的技巧,構造均值不等式的變形技巧等,以便提升解題速度。
8、平面解析幾何與平面向量都具有數與形結合的特徵,所以這兩者多有結合,在它們的知識點交匯處命題,也是高考命題的一大亮點.直線與圓錐曲線的位置關系題目是常考常新、經久不衰的一個考查重點,另外,圓錐曲線中參數的取值范圍題目、最值題目、定值題目、對痴光目等綜合性題目也是高考的常考題型.解析幾何題一般來說計算量較大且有一定的技巧性,需要「精打細算」,近幾年解析幾何題目的難度有所降低,但還是一個綜合性較強的題目,對考生的意志品質和數學機智都是一種考驗,是高考試題中區分度較大的一個題目,有可能作為今年高考的一個壓軸題出現.
例1已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C於M、P,直線MB交拋物線C於另一點Q,如圖.
(1)若△POM的面積為,求向量與的夾角。
(2)試證實直線PQ恆過一個定點。
高考命題雖說千變萬化,但只要找出相應的一些規律,我們就大膽地猜想高考解答題命題的一些思路和趨勢,指導我們後面的溫習。對待高考,我們應該採取正確的態度,再大膽猜測的同時,更要注重基礎知識的進一步鞏固,多做一些簡單的綜合練習,進步自己的解題能力.
一、高考溫習建議:
本章內容是高考重點考查的內容,在每年的高考考試卷中占總分的15%左釉冬分值一直保持穩定,一般有2-3道客觀題和一道解答題。選擇題、填空題不僅重視基礎知識和基本方法,而且具有一定的靈活性與綜合性,難度以中檔題居多,解答題注重考生對基本方法,數學思想的理解、把握和靈活運用,綜合性強,難度較大,常作為把關題或壓軸題,其重點是直線與圓錐曲線的位置關系,求曲線方程,關於圓錐曲線的最值題目。考查數形結合、等價轉換、分類討論、函數與方程、邏輯推理諸方面的能力,對思維能力、思維方法的要求較高。
近幾年,解析幾何考查的熱門有以下幾個
――求曲線方程或點的軌跡
――求參數的取值范圍
――求值域或最值
――直線與圓錐曲線的位置關系
以上幾個題目往往是相互交叉的,例如求軌跡方程時就要考慮參數的范圍,而參數范圍題目或者最值題目,又要結合直線與圓錐曲線關系進行。
總結近幾年的高考試題,溫習時應留意以下題目:
1、重點把握橢圓、雙曲線、拋物線的定義或性質
這是由於橢圓、雙曲線、拋物線的定義和性質是本章的基石,高考所考的題目都要涉及到這些內容,要善於多角度、多層次不斷鞏固強化三基,努力促進知識的深化、升華。
2、重視求曲線的方程或曲線的軌跡
曲線的方程或軌跡題目往往是高考解答題的命題對象,而且難度較大,所以要把握求曲線的方程或曲線的軌跡的一般方法:定義法、直接法、待定系數法、代進法(中間變數法)、相關點法等,還應留意與向量、三角等知知趣結合。
3、加強直線與圓錐曲線的位置關系題目的溫習
由於直線與圓錐曲線的位置關系一直為高考的熱門,這類題目常涉及到圓錐曲線的性質和直線的基本知識點、線段的中點、弦長、垂直題目,因此分析題目時利用數形結合思想和設而不求法與弦長公式及韋達定理聯系往解決題目,這樣就加強了對數學各種能力的考查,其中著力抓好「運算關」,增強抽象運算與變形能力。解析幾何的解題思路輕易分析出來,往往由於運算不過關中途而廢,在學習過程中,應當通過解題,尋求公道運算方案,以及簡化運算的基本途徑和方法,親身經歷運算困難的發生與克服困難的完整過程,增強解決復雜題目的信心。
4、重視對數學思想、方法進行回納提煉,達到優化解題思路,簡化解題過程的目的。
用好方程思想。解析幾何的題目大部分都以方程形式給定直線和圓錐曲線,因此把直線與圓錐曲線相交的弦長題目利用韋達定理進行整體處理,就可簡化解題運算量。
用好函數思想,把握坐標法。
二、知識梳理
●求曲線方程或點的軌跡
求曲線的軌跡方程是解析幾何的基本題目之一,是高考中的一個熱門和重點,在歷年高考中出現的頻率較高,特別是當今高考的改革以考查學生的創新意識為突破口,注重考查學生的邏輯思維能力、運算能力、分析題目和解決題目的能力,而軌跡方程這一熱門,則能很好地反映學生在這些方面能力的把握程度。
下面先容幾種常用的方法
(1) 直接法:動點滿足的幾何條件本身就是一些幾何量的等量關系,我們只需把這種關系「翻譯」成含x、粉底液哪個牌子好y的等式就得到曲線軌跡方程。
(2) 定義法:其動點的軌跡符合某一基本軌跡的定義,則可根據定義直接求出動點的軌跡方程。
(3) 幾何法:若所求的軌跡滿足某些幾何性質(如線段中垂線、角平分線性質等),可以用幾何法,列出幾何式,再代進點的坐標較簡單。
(4) 相關點法(代進法):有些題目中,某動點滿足的條件不便用等式列出,但動點是隨著另一動點(稱為相關點)而運動的,假如相關點所滿足的條件是明顯的,這時我們可以用動點坐標表示相關點坐標,再把相關點代進其所滿足的方程,即可求得動點的軌跡方程。
(5) 參數法:有時求動點應滿足的幾何條件不易得出,也無明顯的相關點,但卻較易發現這個動點的運動經常受到另一個變數(角度、斜率、比值、截距)等的制約,即動點坐標(x、y)中的x、y分別隨另一變數的變化而變化,我們可稱這個變數為參數,建立軌跡的參數方程,這種方法叫參數法。消往參數,即可得到軌跡普通方程。選定參變數要特別留意它的取值范圍對動點坐標取值范圍的影響。
(6) 交軌法:在求動點軌跡時,有時會出現要求兩動曲線交點的軌跡題目,這類題目常通過解方程組得出交點(含參數)的坐標,再消往參數求出所求軌跡方程,該法經常與參數法並用。
●求參數范圍題目
在解析幾何題目中,常用到參數來刻劃點和曲線的運動和變化,對於參變數范圍的討論,則需要用到變與不變的相互轉化,需要用函數和變數往思考,因此要用函數和方程的思想作指導,利用已知變數的取值范圍以及方程的根的狀況求出參數的取值范圍。
例1、已知橢圓C: 試確定m的范圍,使得對於直線l: y = 4x+m 橢圓上有不同的兩點關於直線 l 對稱。
例2、已知雙曲線的中心在原點,右頂點為A(1,0),點P、Q在雙曲線的右支上,點M (m , 0 ) 到直線AP的間隔為1,
(1)若直線AP的斜率為k ,且 ,求實數 m 的取值范圍
(2)當 時,ΔAPQ的內心恰好是點M,求此雙曲線的方程
●值域和最值題目
與解析幾何有關的函數的值域或弦長、面積等的最大值、最小值題目是解析幾何與函數的綜合題目,需要以函數為工具來處理。
解析幾何中的最值題目,一般是根據條件列出所求目標――函數的關系式,然後根據函數關系式的特徵選用參數法、配方法、判別式法,應用不等式的性質,以及三角函數最值法等求出它的最大值或最小值。另外,還可藉助圖形,利用數形結正當求最值。
例1、如圖,已知拋物線 y2 = 4x 的頂點為O,點A 的坐標為(5,0),傾斜角為π/4的直線 l 與線段OA相交(不過O點或A點),且交拋物線於M、N兩點,求△AMN面積最大時直線的方程,並求△AMN的最大面積。
●直線與圓錐曲線關系題目
1、直線與圓錐曲線的位置關系題目,從代數角度轉化為一個方程組實解個數研究(如能數形結合,可藉助圖形的幾何性質則較為簡便)。即判定直線與圓錐曲線C的位置關系時,可將直線方程帶進曲線C的方程,消往y(有時消往x更方便),得到一個關於x的一元方程 ax2 + bx + c = 0
當a=0時,這是一個一次方程,若方程有解,則 l 與C相交,此時只有一個公共點。若C為雙曲線,則 l 平行與雙曲線的漸進線;若C為拋物線,則 l 平行與拋物線的對稱軸。所以當直線與雙曲線、拋物線只有一個公共點時,直線和雙曲線、拋物線可能相交,也可能相切。
當 a≠0 時,若Δ>0 l與C相交
Δ=0 l與C相切
Δ<0 l與C相離
2、涉及圓錐曲線的弦長,一般用弦長公式結合韋達定理求解。
解決弦中點有兩種常用辦法:一是利用韋達定理及中點坐標公式;二是利用端點在曲線上,坐標滿足方程,作差構造出中點坐標和斜率的關系(點差法)
中點弦題目就是當直線與圓錐曲線相交時,得到一條顯冬進一步研究弦的中點的題目. 中點弦題目是解析幾何中的重點和熱門題目,在高考試題中經常出現. 解決圓錐曲線的中點弦題目,「點差法」是一個行之有效的方法,「點差法」顧名思義是代點作差的辦法. 其步驟可扼要地敘述為:①設出弦的兩個端點的坐標;②將端點的坐標代進圓錐曲線方程相減;③得到弦的中點坐標與所在直線的斜率的關系,從而求出直線的方程;④ 作簡
要的檢驗. 本文試圖通過對一道高考試題解法的探討,談點個人見解.
一、高考試題
橢圓C: + = 1(a> b > 0)的兩個焦點為F1,F2,點P在橢圓C上,且PF1⊥F1F2,|PF1|=, |PF2| = .
(1) 求橢圓C的方程;
(2) 若直線l過圓x2 + y2 + 4x - 2y = 0 的圓心M,交橢圓C於A,B兩點,竊讀,B關於點M對稱,求直線l的方程.
二、解題思路
第(1)題的解法不再贅述,答案是:+ = 1,在此基礎上研究第(2)題的解法.
1. 運用方程組的思路
設A(x1,y1),B(x2,y2),已知圓的方程為(x + 2)2 + (y - 1)2 = 5,所以圓心M的坐標為(-2,1),從而可設直線l的方程為:y= k(x+ 2)+1.
∴y= k(x+ 2)+ 1,+=1.消y得
(4 + 9k2)x2 + (36k2 + 18k)x + 36k2 + 36k - 27 = 0.
∵ A,B關於點M對稱,
∴ = - = -2,解得 k =.
∴ 直線l的方程為:8x - 9y + 25 = 0.
2. 運用「點差法」的思路
已知圓的方程為(x+ 2)2+ (y- 1)2= 5,所以圓心M的坐標為(-2,1).
設A(x1,y1),B(x2,y2),由題意x1≠x2且
+ = 1(1)+= 1(2)
由(1)- (2)得
+ = 0(3)
由於A,B關於點M對稱,所以x1 + x2 = -4,y1 + y2 = 2,代進(3)得 k1 = =,所以,直線l的方程為:8x - 9y + 25 = 0. 經檢驗,所求直線方程符合題意.
三、對兩種思路的熟悉
思路1運算較復雜,尤其是消元得到方程這一步,很多學生是不能順利過關的;思路2運算較簡潔,學生易把握. 對於兩種思路都必須分析到:直線l經過圓心,而且圓心是弦的中點. 這些方法在考題中經常有所涉及.
四、對「點差法」的思考
1. 「點差法」使用條件的反思
「點差法」使用起來較為簡潔,那麼使用「點差法」的條件是什麼
假設一條直線與曲線mx2 + ny2 = 1(n,m是不為零的常數,且不同時為負數)相交於A,B兩點,設A(x1,x2),B(x2,y2),則mx12 + ny12= 1,mx22 + ny22 = 1, 兩式相減有:m(x1 - x2)(x1 + x2) = -n(y1 - y2)(y1 + y2). 其中x1+x2與y1 + y2和線段AB的中點坐標有關; 為AB的斜率. 由此可見,知道其中一個可以求出另外一個,意思是說:要用「點差法」,需知道AB的中點和AB的斜率之一才可求另一個. 然後進行扼要的檢驗.
2. 先容一種處理中點弦題目時的巧妙的獨到的解法
例題 已知雙曲線x2 - = 1,問是否存在直線l,使得M(1,1)為直線l被雙曲線所截弦AB的中點.若存在,求出直線l的方程;若不存在,請說明理由.
由題意得M(1,1)為顯讀B的中點,可設A(1+ s,1+ t),B(1- s,1- t),(s,t∈T訂,由於A,B,M不重合可知, s,t不全為零. 又點A,B在雙曲線x2-= 1上,將點的坐標代進方程得
(1+ s)2-= 1(1)(1- s)2-= 1(2)
(1)+ (2) 可得s2= t2 (3)
(1)- (2) 可得t = 2s (4)
將(4)代進(3)可得s= 0,t= 0,不可能,故不存在這樣的直線.
這里我們回納一下解題思路:
已知直線l與圓錐曲線:ax2 + by2 = 1(a,b使得方程為圓錐曲線)相交於A,B兩點,設中點為M(m,n),求直線l方程.
解題思路 設A(m+ s,n+ t),B(m - s,n - t), (s,t∈T訂,由於A,B,M不重合可知,s,t不全為零. 又點A,B在雙曲線ax2 + by2 = 1上,將點的坐標代進方程得a(m + s)2- b(n+ t)2= 1, a(m-s)2 - b(n- t)2= 1.解得:ams = bnt,am2 +s2 = bn2 + t2. (由於這里全是字母運算,表達式復雜,不再求出所有的表達式的具體形式,只是談一下思路)進一步解出s,t的值,從而知道A,B的坐標,運用兩點式求出直線l的方程。

2. 初中數學壓軸題答題技巧 高分解題方法

中考數學壓軸題是有一定的難度,那麼最有初中 數學壓軸題 有哪些方法和解題技巧呢?

中考數學壓軸題的解題技巧分享

在題目中尋找多解的信息

圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題,其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。

學會運用數形結合思想

縱觀近幾年全國各地的 中考數學壓軸題 ,絕大部分都是與平面直角坐標系有關的,其特點是通過建立點與數即坐標之間的對應關系,一方面可用代數方法研究幾何圖形的性質,另一方面又可藉助幾何直觀,得到某些代數問題的解答。

中考數學壓軸題常見題型

線段、角的計算與證明問題

中考的解答題一般是分兩到三部分的。第一部分基本上都是一些簡單題或者中檔題,目的在於考察基礎。第二部分往往就是開始拉分的中難題了。

對這些題輕松掌握的意義不僅僅在於獲得分數,更重要的是對於整個做題過程中士氣,軍心的影響。線段與角的計算和證明,一般來說難度不會很大,只要找到關鍵「題眼」,後面的路子自己就「通」了。

圖形位置關系

中學數學當中,圖形位置關系主要包括點、線、三角形、矩形/正方形以及圓這么幾類圖形之間的關系。在中考中會包含在函數,坐標系以及幾何問題當中,但主要還是通過圓與其他圖形的關系來考察,這其中最重要的就是圓與三角形的各種問題。

初中數學學習方法

做到基本知識不丟一分

首先要梳理知識網路,思路清晰知己知彼。思考中學數學學了什麼,教材在排版上有什麼規律,琢磨這兩個問題其實就是要梳理好知識網路,對知識做到心中有譜。

其次要掌握數學考綱,對考試心中有譜。掌握今年中考數學的考綱,用考綱來統領知識大綱,掌握好必要的基礎知識和過好基本的計算關,做到基本知識不丟一分,那就離做好中考數學的答卷又近了一步。

做好中考數學的最後沖刺

距離中考越來越近,一方面需按照學校的復習進度正常學習,另一方面由於每個人學習情況不一樣,自己還需進行知識點和丟分題型的雙重查漏補缺,找准短板,准確修復。

壓軸題堅持每天一道,並及時總結方法,錯題本就發揮作用了。最後每周練習一套中考模擬卷,及時總結考試問題。

3. 初中數學壓軸題解題技巧有哪些

數學綜壓軸題是為考察考生綜合運用知識的能力而設計的,集中體現知識的綜合性和 方法 的綜合性,多數為函數型綜合題和幾何型綜合題,或兩類問題的組合。下面是我為大家整理的關於初中數學壓軸題解題技巧,希望對您有所幫助。歡迎大家閱讀參考學習!

1初中數學壓軸題解題技巧

函數型綜合題

以給定的直角坐標系和幾何圖形為背景,先求函數的解析式,再進行圖形的研究,求點的坐標或研究圖形的某些性質。

求已知函數的解析式主要方法有待定系數法,包括關鍵是求點的坐標,而求點的坐標基本方法是幾何圖形的性質地幾何法(圖形法)和代數法(解析法)。

幾何型綜合題

先給定幾何圖形,根據已知條件進行計算,常以動點或動形為依託,對應產生線段、面積等的變化,求對應的(未知)函數的解析式,求函數的自變數的取值范圍,最後根據所求的函數關系進行探索研究。一般有:在什麼條件下圖形是等腰三角形、直角三角形,四邊形是平行四邊形、菱形、梯形等,或探索兩個三角形滿足什麼條件全等,相似等,或探究線段之間的數量、位置關系等,或探索麵積之間滿足一定關系時求x的值等,或直線(圓)與圓的相切時求自變數的值等。

求未知函數解析式的關鍵是列出包含自變數和因變數之間的等量關系(即列出含有x、y的方程),此類問題當屬幾何與代數的綜合問題。找等量關系的途徑在初中主要有利用勾股定理、三角形相似、面積相等方法。求函數的自變數的取值范圍主要是尋找圖形的特殊位置(極端位置)和根據解析式求解。而最後的探索問題千變萬化,但少不了對圖形的分析和研究,用幾何和代數的方法求出x的值。是壓軸題的選擇梯形。

2初中數學應用題的解題技巧

認真審題

很多學生在看到應用題之後往往急於尋找其中可用的條件,因此他們往往把目光都集中在一些數據上,而忽視了文字敘述,尤其是在考試時間比較緊張的時候,很多學生在做應用題的時候往往在讀題目時囫圇吞棗,沒有審清題意就急於解答,從而導致錯誤的發生。因此,要想做好應用題首先就要認真審題,理清題目中所表達的意義,這樣,才能夠進行接下來的解題活動。

歸納問題

在讀完題目以後,學生首先要做的就是對題目進行歸納,了解清楚所做的題目屬於什麼類型,這樣才能夠根據不同的類型把實際問題轉化為數學模型。在初中階段,我們接觸的比較多的應用題類型主要包括行程問題、工程問題、生產問題、營銷與策略問題、增長率問題、幾何問題等,而我們在讀完題目進行分類以後,就可以根據不同類型的問題在題目中有目的地尋找需要的條件。例如,在做到路程問題時,我們就要在題目找出路程、速度、時間等數量及其關系,在做到營銷與策略的問題時,就要理清楚單價、數量、總價等條件。總之,只有先進行科學的歸納,才能夠在此基礎上運用之前的知識來進行解題。

找出問題

所謂找出問題,就是要明確在這道應用題中需要我們求出什麼,然後從問題中利用 逆向思維 來推測出要想解決這些問題需要哪些條件,這樣,我們才能以這些信息為依據回到題目中去努力尋找這些條件,為解題做准備。

理清數據信息

為了提高學生的分析和歸納的能力,很多的應用題中會故意給學生設置一些迷霧,給出一些與題目無關的條件或者數據。因此,我們要想解決問題,就要努力在所給出的條件中整理出所需的數據,然後根據題目要求對這些條件或者數據進行整理分析。

3中考數學難題解題技巧

正向思維是最常用的方式

也就是審題之後順著題目要求,從前到後一點點求證,這是證明題的基本方法,中等難度題目、簡單難度題目中較多使用的就是這種方法。 逆向思維,就是與正向思維相反,從求證入手,要想做到這樣的結果,需要什麼樣的條件,一步一步反向分析。逆向思維對於讀完題干要求之後完全不知從何入手的題目有很大的解題幫助,從結論出發,有時候問題反而更簡便

例如:要證明有兩條邊長度相等,那麼結合圖形發現只要證明他們存在的三角形相等就可以了;為了證明這兩個三角形是全等的,那麼我們需要有什麼樣的角的條件;為了找到角之間的關系,我們需要在哪裡做一條輔助線……這樣思考下去,其實所需要的一切條件就都具備了。這種解題方法在平時的解題中要對學生多鍛煉。

正逆結合

這是高難度題目中重點強調的解題思路,對於一些從結論很難得出完整思路,又不知道從哪裡開始下手時,就要選取正逆結合的方法。初中數學中,基本上題目給的已知條件都是有用的,所以一定不能放過每一個條件,多做引申。

比如給了三角形一條邊的中點,我們就要考慮是否要做出中位線,給出了梯形我們就要考慮是不是要做高,是不是要平移腰或者對角線,是不是要補出某種圖形等等。

4初中數學證明題解題技巧

仔細審題,確定題意

審題是做題的第一步,這個過程就像翻譯機的工作原理,要把純文字語言轉換成我們所理解的數學模型。首先要仔細的讀題,標注出重點詞,分清已知和求證。比如講題目中的要求改寫成「如果在等腰三角形中,做出兩底角的角平分線,那麼可以推出這兩條角平分線長度相等」。如果有圖就最好結合圖形,如果題目沒有給圖,就要求學生 根據題意做出合理圖形,將圖形模型建立起來,切忌憑空想像,一定要動手畫圖。再次就是已知數學語言和符號寫出「已知」和「求證」,「已知」是命題的條件,「求證」是命題的結論,一定要注意已知和求證的表達方式是數學語言、符號。

審題中需要注意的是,除了要標記題目的重點,還要學會適當的引申。在審題的過程中將一些課堂上學過的基本定理和基本圖形、特殊圖形與題目相結合,便於後面進行解題時提高正確率和速度。這也是對學生構建知識體系提出了更高的要求。

不重不漏,仔細檢查

分析過程完成後,就是答題的重頭戲了,用數學的語言和符號闡述整個證明過程。書寫過程要求嚴謹細致,既不能無中生有,也不能胡說八道、亂來一氣,要做到有根有據,有因為、有所以。在幾個解題思路中選取一個,按照解題思路完整的表達就可以了。

中學生錯題率高還有一個原因就是沒有養成檢查的好習慣。數學的嚴謹性在證明題中體現得淋漓盡致,每一個步驟都要具備合理性,要寫出足夠證明結論的公理、定理或者推論,不能憑空捏造,也不能隨意推想。在證明的過程中,每一步都要仔細檢查,不能有所疏漏、少條件,也不能犯寫作答案,看錯要求等等粗心導致的錯誤。只有仔細檢查,才能保證做到言之有理,言之有據,不失一分。


初中數學壓軸題解題技巧有哪些相關 文章 :

1. 初中數學中考知識重難點分析

2. 2020中考數學科目的壓軸題解題方法

3. 2020中考數學備考之壓軸題十個方法

4. 初二數學壓軸題答題技巧

5. 學好初中三年數學的方法有哪些

6. 怎樣提高初三數學壓軸題

7. 初三數學學習方法和技巧大全

8. 中考數學總復習六大策略

9. 2020高考數學得高分的技巧大全

閱讀全文

與幾何壓軸計算方法相關的資料

熱點內容
核定徵收計算方法 瀏覽:463
以舊探新英語語音教學方法 瀏覽:63
累了怎麼快速減肥的方法 瀏覽:130
個人賬務計算方法 瀏覽:12
漿渣分離磨漿機使用方法 瀏覽:400
乙酸的測量方法 瀏覽:29
什麼方法可以產生你的企業想法 瀏覽:172
折疊躺椅的使用方法 瀏覽:950
山西美食製作方法附圖片 瀏覽:79
扭出紅繩的方法視頻 瀏覽:547
模擬戒指如何製作方法 瀏覽:569
廢機油國標分析方法 瀏覽:424
15歲男生怎樣快速長高的方法 瀏覽:439
績效改進中分析問題的常見方法 瀏覽:727
dna無創檢測方法 瀏覽:628
管理理論基礎的研究方法 瀏覽:403
單相水泵的密封圈安裝方法 瀏覽:301
顯示器好壞的鑒別方法 瀏覽:430
臉上毛孔粗大怎麼解決的土方法 瀏覽:200
企業擴大內部晉升有哪些方法 瀏覽:869