Ⅰ 找規律題的方法
(一)標出序列號:找規律的題目,通常按照一定的順序給出一系列量,要求我們根據這些已知的量找出一般規律。找出的規律,通常包序列號。所以,把變數和序列號放在一起加以比較,就比較容易發現其中的奧秘。
例如,觀察下列各式數:0,3,8,15,24,……。試按此規律寫出的第100個數是
100 ,第n個數是 n
。
解答這一題,可以先找一般規律,然後使用這個規律,計算出第100個數。我們把有關的量放在一起加以比較:
給出的數:0,3,8,15,24,……。
序列號:
1,2,3, 4, 5,……。
容易發現,已知數的每一項,都等於它的序列號的平方減1。因此,第n項是
-1,第100項是 —1
(二)公因式法:每位數分成最小公因式相乘,然後再找規律,看是不是與n,或2n、3n有關。
例如:1,9,25,49,(81),(121),的第n項為(
),
1,2,3,4,5.。。。。。。,從中可以看出n=2時,正好是2×2-1的平方,n=3時,正好是2×3-1的平方,以此類推。
(三)看例題:
A:
2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18
答案與3有關且是n的3次冪,即:
n +1
B:2、4、8、16.......增幅是2、4、8..
.....答案與2的乘方有關即:
(四)有的可對每位數同時減去第一位數,成為第二位開始的新數列,然後用(一)、(二)、(三)技巧找出每位數與位置的關系。再在找出的規律上加上第一位數,恢復到原來。
例:2、5、10、17、26……,同時減去2後得到新數列:
0、3、8、15、24……,
序列號:1、2、3、4、5,從順序號中可以看出當n=1時,得1*1-1得0,當n=2時,2*2-1得3,3*3-1=8,以此類推,得到第n個數為
。再看原數列是同時減2得到的新數列,則在
的基礎上加2,得到原數列第n項
(五)有的可對每位數同時加上,或乘以,或除以第一位數,成為新數列,然後,在再找出規律,並恢復到原來。
例 :
4,16,36,64,?,144,196,…
?(第一百個數)
同除以4後可得新數列:1、4、9、16…,很顯然是位置數的平方,得到新數列第n項即n
,原數列是同除以4得到的新數列,所以求出新數列n的公式後再乘以4即,4
n ,則求出第一百個數為4*100 =40000
(六)同技巧(四)、(五)一樣,有的可對每位數同加、或減、或乘、或除同一數(一般為1、2、3)。當然,同時加、或減的可能性大一些,同時乘、或除的不太常見。
(七)觀察一下,能否把一個數列的奇數位置與偶數位置分開成為兩個數列,再分別找規律。
Ⅱ 規律如何找
規律是什麼?上學時候經常會遇到找規律的數學題,小學時候有簡單的找數字規律的題(簡單的數列),到了高中有數列這種找規律 列數列公式的題,數列就是找規律題的代表,數列可以用統一的公式去描述,那麼規律可以理解成可以統一描述相似過程的模型。
理科中發現的規律叫做公式,實際的生產中的規律用模型來描述。做一件事情比如包餃子,要包100個餃子,整個過程中有哪些重復的相似子過程呢?當然這里包一個餃子的過程就是重復n遍的子過程了,將這個子過程叫做單位過程,包完100個餃子=包1個餃子*100,那麼我們只要掌握了包一個餃子的過程加以100次重復即可完成任務,這個單位過程是如此重要,單位過程即是模型過程,整體過程再大也最終會化成單位過程*n。上述的單位過程構成整體的方法在編程中使用for循環實現的,是啊,任何很復雜的過程都是可以用編程中的if for 去描述出來的,for循環實現了無限變有限,無限的整體也無非是由相似的單位個體構成的,我只要知道你的邊界以及單位模型即可描述出你的整體構造過程。由此可見,單位模型是如此的重要,單位模型是重復的相似子過程,找規律其實就是在找單位模型,下面舉例說明如何去找單位模型。