① 數學概率計算方法
概率=符合條件的數目/總數目
概率,又稱或然率、機會率或機率、可能性,是數學概率論的基本概念,是一個在0到1之間的實數,是對隨機事件發生的可能性的度量。
概率的公式很多,不知道你要哪個方面的:
1.P(Φ)=0. 性質2(有限可加性).當n個事件A1,…,An兩兩互不相容時: P(A1∪...∪An)=P(A1)+...+P(An). _ 性質3.對於任意一個事件A:P(A)=1-P(非A). 性質4.當事件A,B滿足A包含於B時:P(BnA)=P(B)-P(A),P(A)≤P(B). 性質5.對於任意一個事件A,P(A)≤1. 性質6.對任意兩個事件A和B,P(B-A)=P(B)-P(AB). 性質7(加法公式).對任意兩個事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B). (註:A後的數字1,2,...,n都表示下標.)
② 求概率計算公式
古典概型:
(1)算出所有基本事件的個數n;
(2)求出事件A包含的所有基本事件數m;
(3)代入公式P(A)=m/n,求出P(A)。
幾何概型:
設在空間上有一區域G,又區域g包含在區域G內(如圖),而區域G與g都是可以度量的(可求面積),現隨機地向G內投擲一點M,假設點M必落在G中,且點M落在區域G的任何部分區域g內的概率只與g的度量(長度、面積、體積等)成正比,而與g的位置和形狀無關.具有這種性質的隨機試驗(
擲點),稱為幾何概型。關於幾何概型的隨機事件「 向區域G中任意投擲一個點M,點M落在G內的部分區域g」的概率P定義為:g的度量與G的度量之比,即
P=g的測度/G的測度
幾何概型求事件A的概率公式:
一般地,在幾何區域D中隨機地取一點,記事件「該點落在其內部一個區域d內」為事件A,則事件A發生的概率為:
P(A)=構成事件A的區域長度(面積或體積)/ 實驗的全部結果所構成的區域長度(面積或體積)
這里要指出:D的測度不能為0,其中「測度」的意義依D確定.當D分別為線段,平面圖形,立體圖形時,相應的「測度」分別為長度,面積,體積等.
③ 概率的計算公式
12粒圍棋子從中任取3粒的總數是C(12,3)
取到3粒的都是白子的情況是C(8,3)
C(8,3)
P=——————=14/55
C(12,3)
排列:從n個不同的元素中取m(m≤n)個元素,按照一定的順序排成一排,叫做從n個不同的元素中取m個元素的排列。
排列數:從n個不同的元素中取m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,記為Anm
排列公式:A(n,m)=n*(n-1)*.....(n-m+1)
組合:從n個不同的元素中,任取m(m≤n)個元素並成一組,叫做從n個不同的元素中取m個元素的組合。
組合數:從n個不同的元素中取m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數,記為Cnm。
組合公式:C(n,m)=A(n,m)/m!=n!/(m!*(n-m)!)
拓展資料:
概率的計算,是根據實際的條件來決定的,沒有一個統一的萬能公式。解決概率問題的關鍵,在於對具體問題的分析。然後,再考慮使用適宜的公式。
有一個公式是常用到的:P(A)=m/n。「(A)」表示事件。「m」表示事件(A)發生的總數。「n」是總事件發生的總數。
④ 概率如何計算
定義事件和結果。概率是在一系列可能結果中一個或多個事件發生的可能性。因此,假設我們希望計算出把一個六面骰子擲出三的可能性。"擲出三"是一個事件,而我們知道六面骰子可以被擲出六個數字中的任何一個,因此其結果數為六。以下為另外兩個例子能加深你的理解:
例1:隨機選擇一個星期中的一天,選出的一天是周末的可能性有多大?
"選出周末中的一天"是我們的事件,而結果數就是一個星期中的天數,即七。
例2:一個罐子中裝有4個藍色小石、5個紅色小石和11個白色小石。如果隨機從罐子中取出一塊小石,這塊小石是紅色的可能性有多大?
"選出紅色小石"是我們的事件,結果數是罐子中小石的總數,即20。
2
用事件數除以可能結果數。所得結果即為單一事件發生的概率。在擲骰子中擲出三的例子中,事件數為一(每一骰子中只有一個三),而結果數為六。則其概率為1 ÷ 6、1/6、.166或16.6%。以下為計算其他例子中的概率的方法:
例1:隨機選擇一個星期中的一天,選出的一天是周末的可能性有多大?
事件數為二(因為一個星期中有兩天為周末),而結果數為七。則其概率為2 ÷ 7 = 2/7即.285或28.5%。
例2:一個罐子中裝有4個藍色小石、5個紅色小石和11個白色小石。如果隨機從罐子中取出一塊小石,這塊小石是紅色的可能性有多大?
事件數為五(因為共有五塊小石),而結果數為20。則其概率為5 ÷ 20 = 1/4即.25或25%。
⑤ 數學概率C怎麼計算
排列(有順序):mAn=m*(m-1)*.....*(m-n+1)
組合(無順序):mCn=m*(m-1)*.....*(m-n+1)/(1*2*...*n)
等可能事件:P(A)=m/n
互斥事件:P(A+B)=P(A)+P(B)
P(A·B)=0
獨立事件:P(A·B)=P(A)·P(B)
公式:C(m/n)[m在上n在下]=n×(n—1)…(n—m+1)/m
拓展資料
概率統計是研究自然界中隨機現象統計規律的數學方法,叫做概率統計,又稱數理統計方法。概率統計主要研究對象為隨機事件、隨機變數以及隨機過程。
概率統計是應用概率的理論來研究大量隨機現象的規律性;對通過科學安排的一定數量的實驗所得到的統計方法給出嚴格的理論證明;並判定各種方法應用的條件以及方法、公式、結論的可靠程度和局限性。使我們能從一組樣本來判定是否能以相當大的概率來保證某一判斷是正確的,並可以控制發生錯誤的概率。
參考資料:網路-概率統計
⑥ 概率的算數計算方法
概率的算數計算方法:
柯爾莫哥洛夫於1933年給出了概率的公理化定義,如下:
設E是隨機試驗,S是它的樣本空間。對於E的每一事件A賦於一個實數,記為P(A),稱為事件A的概率。這里P(·)是一個集合函數,P(·)要滿足下列條件:
(1)非負性:對於每一個事件A,有P(A)≥0;
(2)規范性:對於必然事件Ω,有P(Ω)=1;
(3)可列可加性:設A1,A2……是兩兩互不相容的事件,即對於i≠j,Ai∩Aj=φ,(i,j=1,2……),則有P(A1∪A2∪……)=P(A1)+P(A2)+……
概率,又稱或然率、機會率、機率(幾率)或可能性,它是概率論的基本概念。概率是對隨機事件發生的可能性的度量,一般以一個在0到1之間的實數表示一個事件發生的可能性大小。越接近1,該事件更可能發生;越接近0,則該事件更不可能發生,其是客觀論證,而非主觀驗證。如某人有百分之多少的把握能通過這次考試,某件事發生的可能性是多少,這些都是概率的實例。
⑦ 如何用EXCEL計算數字概率
一、FACT函數求組合
FACT函數是求組合的函數
例1、1至9中組成不包含重復數的9位數,有幾種組合方式呢,可以用下列公式 =FACT(9)。
⑧ 概率怎麼計算
1、C 3 10 = (10*9*8)/(1*2*3)
A 3 10=10*9*8
2、A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每個數連乘。
C(n,m)=A(n,m)/A(m,m)。一般地,從n個不同的元素中,任取m(m≤n)個元素為一組,叫作從n個不同元素中取出m個元素的一個組合。
(8)數字概率計算方法擴展閱讀:
概率的加法法則
定理:設A、B是互不相容事件(AB=φ),則:
P(A∪B)=P(A)+P(B)
推論1:設A1、 A2、…、 An互不相容,則:P(A1+A2+...+ An)= P(A1) +P(A2) +…+ P(An)
推論2:設A1、 A2、…、 An構成完備事件組,則:P(A1+A2+...+An)=1
推論3:為事件A的對立事件。
推論4:若B包含A,則P(B-A)= P(B)-P(A)
推論5(廣義加法公式):對任意兩個事件A與B,有P(A∪B)=P(A)+P(B)-P(AB)[1]
條件概率
條件概率:已知事件B出現的條件下A出現的概率,稱為條件概率,記作:P(A|B)
條件概率計算公式:
當P(A)>0,P(B|A)=P(AB)/P(A)
當P(B)>0,P(A|B)=P(AB)/P(B)
乘法公式
P(AB)=P(A)×P(B|A)=P(B)×P(A|B)
推廣:P(ABC)=P(A)P(B|A)P(C|AB)[1]
⑨ 概率計算方法如下題
復述一遍題意:三組數,每組(1,2,3,4,5,6),每次同時從三組數中每組抽一個數組成一組:(a1,a2,a3),問第5組抽取的數的概率?
第5組抽取什麼數的概率?
如果前四次結果給了,求第5組抽取某個確定數組的概率,那應該是獨立事件,跟前四組數沒關系;否則是條件概率
⑩ 如何用EXCEL計算數字概率
1、下圖是舉例的統計數據。對於每天登錄網路產品的次數,輸入相應的數量並開始處理。