導航:首頁 > 計算方法 > 數學口算所有簡便計算方法

數學口算所有簡便計算方法

發布時間:2023-09-11 07:21:11

1. 數學簡便運算

簡便凳敏攔計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。
它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。
就像68+77=?
大多數人不一定立刻能算出結果,
如果換成70+75=?
相信每一個人都可以一口算出和是145。
這里其實就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇見復雜的計算式時,
先觀察有沒有可能湊整,
湊成整十整百之後再進行計算,
不僅簡便,而且避免計算出錯。
①加減湊整
【例題1】999+99+29+9+4=?
題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例題2】5999+499+299+19=?
看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。
沒有槍沒有炮,自己去創造!
先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分組湊整
在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。
【例題3】100-95+92-89+86-83+80-77=?
題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。
根據加法減法運算性質拿配,我們給相鄰的項加上括弧。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。
③提取公因數法
這就需要用到乘法分配律提取公因數,
又稱為提取公因數法。
如果沒有公因數,我們可以採取乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例題4】47.9x6.6+529x0.34=?
很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
簡便計算的考察重點在於四則運算規律的靈活運用,方法掌棗胡握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。

2. 數學簡便計算,有哪幾種方法

簡便計算主要有三大方法,分別是加減湊整、分組湊整、提公因數法。

它採用數學計算中的拆分湊整思想,通過四則運算規律,從而簡化計算。

就像68+77=?

大多數人不一定立刻能算出結果,

如果換成70+75=?

相信每一個人都可以一口算出和是145。

這里其實就是把77拆分成2+75,

68+77

=68+2+75

=70+75

=145

遇見復雜的計算式時,

先觀察有沒有可能湊整,

湊成整十整百之後再進行計算,

不僅簡便,而且避免計算出錯。

①加減湊整

【例題1】999+99+29+9+4=?

題中999,99,29,9這四個數字與整數1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把這4個1補到999,99,29,9上,原式就可以簡化成:

999+99+29+9+4

=999+99+29+9+1+1+1+1

=999+1+99+1+29+1+9+1

=1000+100+30+10

=1140

【例題2】5999+499+299+19=?

看完例1,再來看看例2,還是末位都是9,自然要用我們的湊整法了,不過稍有不同,因為例2中沒有4來拆分成1+1+1+1。

沒有槍沒有炮,自己去創造!

先把它加上1+1+1+1,然後再減去4,不就相當於式子加了一個0嗎?

5999+499+299+19

=5999+1+499+1+299+1+19+1-4

=6000+500+300+20-4

=6816

②分組湊整

在只有加減法的計算題中,將算式中的各項重新分下組湊整,也可以使計算非常方便。

【例題3】100-95+92-89+86-83+80-77=?

題目中的兩位數加減混合運算,硬算是非常費勁的,但是似乎又不能拆分湊整,再觀察題目可以發現從第2個數95起,後面的數都比前一個小3。

根據加法減法運算性質,我們給相鄰的項加上括弧。

100-95+92-89+86-83+80-77

=(100-95)+(92-89)+(86-83)+(80-77)

=5+3+3+3

=14

湊整法不僅可以用在加減計算中,乘除加減混合運算也常常會考到。

③提取公因數法

這就需要用到乘法分配律提取公因數,

又稱為提取公因數法。

如果沒有公因數,我們可以採取乘法結合律變化出公因數。

a×b=(a×10)×(b÷10),

a×b÷c=a÷c×b,

a×b×c=a×(b×c)。

【例題4】47.9x6.6+529x0.34=?

很明顯題目中的6.6+3.4=10,我們想辦法湊出一個3.4,這就用到了a×b=(a×10)×(b÷10)。但是即使10湊出來,仍然不能提取公因數來簡便計算,這就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,創造出一個47.9,方便我們提取公因數。

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+(47.9+5)x3.4

=47.9x(6.6+3.4)+17

=496

簡便計算的考察重點在於四則運算規律的靈活運用,方法掌握的基礎上,對於四則運算規律必須牢記在心,才能更好地理解運用。

3. 數學簡便計算,有哪幾種方法

數學簡便計算方法

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

4. 能快速口算的技巧有哪些方法

一、一種做多位乘法不用豎式的方法.我們都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?這時候,大家一般都會用豎式,通過豎式計算,得數是132、156、168.其中有趣的規律:即個位上的數字正好是兩個因數個位數字的積.十位上的數字是兩個數字個位上的和.百位上的數字是兩個因數十位數字的積.例如:
12X14=168 1=1X1 6=2+4 8=2X4如果有進位怎麼辦呢?這個定律對有進位的情況同樣適用,在豎式時只要~滿幾時,就向下一位進幾.~例如:
14X16=224 4=4X6的個位 2=2+4+6 2=1+1X1 試著做做看下面的題:
12X15= 11X13= 15X18= 17X19=二、幾十一乘以幾十一的速算方法 例如: 21×61= 41×91= 41×91= 51×61= 81×91= 41×51= 41×81= 71×81= 這些算式有什麼特點呢?是「幾十一乘以幾十一」的乘法算式,我們可以用:先寫十位積,再寫十位和(和滿10 進1),後寫個位積.「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」就是一見到幾十一乘以幾十一的乘法算式,如果十位數的和是一位數,我們先直接寫十位數的積,再接著寫十位數的和,最後寫上1 就一定正確;如果十位數的和是兩位數,我們先直接寫十位數的積加1 的和,再接著寫十位數的和的個位數,最後寫一個1 就一定正確.我們來看兩個算式:21×61=41×91= 用「先寫十位積,再寫十位和(和滿10 進1),後寫個位積」這種速算方法直接寫得數時的思維過程.第一個算式,21×61=?思維過程是:2×6=12,2+6=8, 21×61 就等於1281.第二個算式,41×91=?思維過程是:4×9=36,4+9=13,36+1=37, 41×91 就等於3731. 試試上面題目吧!然後再看看下面幾題 61×91= 81×81= 31×71= 51×41=一、10-20的兩位數乘法及乘方速算方法:尾數相乘,被乘數加上乘數的尾數(滿十進位)【例1】 1 2 X 1 3 ----------1 5 6 (1)尾數相乘2X3=6 (2)被乘數加上乘數的尾數12+3=15 (3)把兩計算結果相連即為所求結果【例2】 1 5X 1 5------------2 2 5(1)尾數相乘5X5=25(滿十進位)(2)被乘數加上乘數的尾數15+5=20,再加上個位進上的2即20+2=22(3)把兩計算結果相連即為所求結果二、兩位數、三位數乘法及乘方速算a.首數相同,尾數相加和是十的兩位數乘法 方法:尾數相乘,首數加一再相乘 【例1】 5 4X 5 6---------3 0 2 4(1)尾數相乘4X6=24直接寫在十位和個位上(2)首數5加上1為6,兩首數相乘6X5=30(3)把兩結果相連即為所求結果【例2】 7 5X 7 5----------5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數7加上1為8,兩首數相乘8X7=56(3)把兩計算結果相連即可b.尾數是5的三位數乘方速算方法:尾數相乘,十位數加一,再將兩首數相乘【例】 1 2 5X 1 2 5------------1 5 6 2 5(1)尾數相乘5X5=25直接寫在十位和個位上(2)首數12加上1為13,再兩數相乘13X12=156(3)兩計算結果相連c.任意兩位數乘法方法:尾數相乘,對角相乘再相加,首數相乘 【例】 3 7X X 6 2---------2 2 9 4(1)尾數相乘7X2=14(滿十進位)(2)對角相乘3X2=6;7X6=42,兩積相加6+42=48(滿十進位)(3)首數相乘3X6=18加上十位進上的4為18+4=22(4)把計算結果相連即為所求結果b.任意兩位數及三位平方速算方法:尾數的平方,首數乘尾數擴大2倍,首數的平方[例] 2 3X 2 3---------5 2 9 (1)尾數的平方3X3=9(滿十進位)(2)首尾數相乘2X3=6擴大兩倍為12寫在十位上(滿十進位)(3)首數的平方2X2=4加上十位進上的1為5(4)把計算結果相連即為所求結果c.三位數的平方與兩位數的平方速算方法相同[例] 1 3 2 X 1 3 2------------1 7 4 2 4(1)尾數的平方2X2=4寫在個位(2)首尾數相乘13X2=26擴大2倍為52寫在個位上(滿十進位)(3)首數的平方13X13=169加上十位進上的5為174(4)把計算結果相連即為所求結果〖注意:三位數的首數指前兩位數字!〗三、大數的平方速算方法:把題目與100相差,相差數稱之為差數;先算差數的平方寫在個位和十位上(缺位補零),再用題目減去差數得一結果;最後把兩結果相連即為所求結果【例】 9 4X 9 4-----------8 8 3 6(1)94與100相差為6(2)差數6的平方36寫在個位和十位上(3)用94減去差數6為88寫在百位和千位上(4)把計算結果相連即為所求結果 B55 × 55 = ? 27 × 23 = ? 91 × 99 = ? 43 × 47 = ? 88 × 82 = ? 74 × 76 = ?大家能夠很快算出這些算式的正確答案嗎?注意,是很快哦!你能嗎?我能--3025 ; 621 ; 9009 ;2021 ; 7216 ; 5624 ;很神氣吧!速算秘訣:(就以第一題為例好啦)(1)分別取兩個數的第一位,而後一個的要加上一以後,相乘.[5×(5+1)]=30;(2)再將末尾數相乘的得數寫在後面就可以得出正確的答案了.5×5=25;(3)3025!Bingo!其它依次類推就行了.仔細看每一個式子里的兩位數的十位是相同的,而個位的兩數則是相補的.這樣的速算秘訣只能夠適用於這種情況的算式.所以說大家千萬不要把巧算和真正的速算混淆在一起,真正的速算是任何數都能算的.一、關於9的數學速算技巧(兩位數乘法)
關於9的口訣:
1 × 9 = 9 2 × 9 = 18 3 × 9 = 27 4 × 9 = 36
5 × 9 = 45 6 × 9 = 54 7 × 9 = 63 8 × 9 = 72
9 × 9 = 81從上面的口訣口有沒有看到從1到9任何一個數和9相乘的積,個位數和十位數的和還是等於9.
你看上面的:0 + 9 =9;1 + 8 = 9;2 + 7 = 9;3 + 6 = 9;
4 + 5 = 9;5 + 4 = 9;6 + 3 = 9;7 + 2 = 9;8 + 1 = 9下面我們再做一些復雜一點的乘法:
18 × 12 = ? 27 × 12 = ? 36 × 12 = ? 45 × 12 = ?
54 × 12 = ? 63 × 12 = ? 72 × 12 = ? 81 × 12 = ?
關於兩位數的乘法,上面的題目中,前面的乘數都是9的倍數,而且個位和十位的和都等於9.
這樣我們能不能找到一種簡便的演算法呢?也就是把兩位數的乘法變成一位數的乘法呢?
我們先把上面這些數變一變.
18 = 1 × 10 + 8;27 = 2 × 10 + 7;36 = 3 × 10 + 6;
45 = 4 × 10 + 5;54 = 5 × 10 + 4;63 = 6 × 10 + 3;
72 = 7 × 10 + 2;81 = 8 × 10 + 1;
我們再把上面的數變一變
1 × 10 + 8 = 1 × 9 + 1+8 = 1 × 9 + 9 = 1 × 9 + 9 = 2 × 9
當然如果知道口訣你們可以直接把18 = 2 × 9同樣的方法你們可以拆出下面的數,也可以背口訣27 = 3 × 9 ; 36 = 4 × 9 ;45 = 5 × 9
54 = 6 × 9 ; 63 = 7 × 9 ;72 = 8 × 9
81 = 9 × 9
為了找到計算上面問題的方法,我們把上面的式子再變一次.
18 = 2×(10-1);27 = 3×(10-1);36 = 4×(10-1)
45 = 5×(10-1);54 = 6×(10-1);63 = 7×(10-1)
72 = 8×(10-1);81 = 9×(10-1)
現在我們來算上面的問題:
18 × 12 = 2×(10-1)× 12
= 2 ×(12 ×10 - 12)
= 2 ×(120- 12)
120 - 12 = 108;
這樣就有了
18 × 12 = 2 × 108 = 216
是不是把一個兩位數的乘法變成了一位數的乘法?
而且可以通過口算就得出結果?我用這種方法教威威算乘法,他只需要我算這一個,後邊的題目就自己會算了.
上面我們的計算好象很麻煩,其實現在總結一下就簡單了.

5. 口算的三種方法

口算的三種方法如下:

一、十幾乘十幾:

1、口訣:頭乘頭,尾加尾,尾乘尾。

2、例:13×15=?解:1×1=1,3+5=8,3×5=15,13×15=195。

3、註:個位相乘,不夠兩位數要用0佔位。

四、提高孩子口算能力的3個方法:

1、引導孩子理解並掌握口算技巧

口算技巧,其實就是一個數學計算的基本知識。比如湊十法、分解法、九九加減乘除口訣者鍵、數字大小、進位借位等,這些知識在大人看來似乎是小兒科的東西,但是對於孩子口算能力提升有重要作用。如果這些都不能熟練掌握,那麼,孩子的口算水平就會比較差。

2、從孩子的興趣入手,化被動學習為主動學習

要想孩子好學數學,建議從興趣方面入手,化被動為主動,就像大家推崇的寓教於樂一樣,這種學習方式,不僅能讓孩子輕松學習,而且學習效率也更高。

3、有始有終,持之以恆

學習不是一蹴而就的事情,想要真正地提高自己的口算能力,並不是今天發憤圖強,明天就能夠登上成功的寶座。所以,在進行口算訓練的時候,一定要注意讓孩子有始有終,持之以脊嫌孝恆,每天都堅持訓練。

6. 口算的技巧有哪些

口算是我們生活當中經常要運用到的一種數學方法,對於學生來說,主要是在小學階段用得比較多。掌握一定的口算速算技巧,可以讓數學學習更加有效,讓孩子愛上學習數學。口算的速算技巧有很多,適合於不同的年齡階段,比如湊整法就是根據式題的特徵,應用定律和性質使運算數據「湊整」。

1、加法湊整

例:32+15+8

原式=32+8+15=40+15=55

幾個數相加,如果有幾個數相加能湊成整十的數,可以調換加數的位置,再把幾個數相加。

2、減法湊整

例:50-13-7

原式=50-(13+7)=50-20=30

從一個數里連續減去幾個數,如果減數的和能湊成整十的數,可以把減數先加後再減。

3、乘法湊整

例1:25×14×4

原式=25×4×14=100×14=1400

先熟記25×4=100,125×8=1000;碰到25、125這樣大的乘數先看看是否可以湊出4、8。

例2:25×32

原式=25×4×8=10×8=80

在熟記上面式子的基礎上,把題目中的某數「拆開」分別與另一個數運算。

2.巧用乘法分配律

巧用乘法分配律格式為:m(a+b)=ma+mb

例1: 33×99

原式=33×(100-1)=3300-33=3267

例2: 666×666

原式=333×2×222×3=999×444=(1000-1)×444=444000-444=443556

3.找基準數法

找基準數法就是先把每個數與基準數的差累計起來,再加上基數與項數的積。

例:623+595+602+600+588

可選擇600為基數,原式=600×5+23-5+2-12=3008

4.熟記常用數據

熟記1到20各自然數的平方數,可以有效提高做計算題的速度。

7. 三年級數學快速口算方法

只要熟練掌握計演算法則和運算順序,根據題目本身的特點,使用合理、靈活的計算方法,化繁為簡,化難為易,就能算得又快又准確。先為大家介紹5個速算技巧:

1. 方法一:帶符號搬家法

當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。

例如:

23-11+7=23+7-11

4×14×5=4×5×14

10÷8×4=10×4÷8

2. 方法二:結合律法

加括弧法

(1)在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。

例如:

23+19-9=23+(19-9)

33-6-4=33-(6+4)

(2)在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。

例如:

2×6÷3=2×(6÷3)

10÷2÷5=10÷(2×5)

去括弧法

(1)在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。

例如:

17+(13-7)=17+13-7

23-(13-9)=23-13+9

23-(13+5)=23-13-5

(2)在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)

例如:

1×(6÷2)=1×6÷2

24÷(3×2)=24÷3÷2

24÷(6÷3)=24÷6×3

3. 方法三:乘法分配律法

分配法

括弧里是加或減運算,與另一個數相乘,注意分配。

例如:

8×(5+11)=8×5+8×11

提取公因式法

注意相同因數的提取。

例如:

9×8+9×2=9×(8+2)

4. 方法四:湊整法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦,有借有還,再借不難嘛。

例如:

99+9=(100-1)+(10-1)

5. 方法五:拆分法

拆分法就是為了方便計算,把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。

例如:

32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

要想讓孩子熟練運用速算方法,需要通過持之以恆的練習,提升計算能力,這樣,無論平時做作業還是考試都能游刃有餘。

建議家長每天抽出5分鍾時間,幫助孩子進行口算練習,培養孩子快速、准確口算的能力。在練習過程中,也要記錄好用時,做完後馬上核對正誤,並分析做錯的原因。

8. 數學口算簡單的方法



用「湊十法」口算

根據式題的特徵,應用定律和性質使運算數據「湊整」:

1、加數「湊整」。

如14+5+6=?啟發學生:幾個數相加,如果有幾個數相加能湊成整十的數,可以調換加數的位置,把幾個數相加。

2、運用減法性質「湊整」。

如50-13-7,啟發學生說出思考過程,說出幾種口算方法並通過比較,讓學生總結出:從一個數里連續減去幾個數,如果減數的和能湊成整十的數,可以把減數先加後再減。這種口算比較簡便。

3.連乘中因數「湊整」。

如25×14×4,25與4的積是100,可直介面算出結果是140。



運用「分解法」口算

就是把題目中的某數「拆開」分別與另一個數運算,如25×32,原式變成25×4×8=10×8=80。



運用一些速算技巧進行口算

1.首同尾合10的兩個兩位數相乘的乘法速算。

即用其中一個十位上的數加1再乘以另一個數的十位數,所得積作兩個數相乘積的百位、千位,再用兩個數個位上數的積作兩個數相乘的積的個位、十位。如:14×16=224(4×6=24作個位、十位、(1+1)×1=2作百位)。

2.頭差1尾合10的兩個兩位數相乘的乘法速算。即用較大的因數的十位數的平方,減去它的個位數的平方。如:48×52=2500-4=2496。

3.採用「基準數」速算。

如623+595+602+600+588可選擇600為基數,先把每個數與基準數的差累計起來,再加上基數與項數的積。

4.掌握一些運算規律。

例如,兩個分母互質數且分子都為1的分數相減,可以把分母相乘的積作分母,把分母的差作分子;兩個分母互質數且分子相同,可以把分母相乘的積作為分母,分母相減的差再乘以分子作分子,等等。

閱讀全文

與數學口算所有簡便計算方法相關的資料

熱點內容
甜瓜成熟度鑒別方法 瀏覽:957
女性用產卵器的使用方法 瀏覽:119
打8折怎麼算計算方法 瀏覽:243
修水管後太陽能不上水解決方法 瀏覽:920
球星後撤步訓練方法 瀏覽:662
本草綱目中治療白癜風方法 瀏覽:966
無人機飛行高度解決方法 瀏覽:79
心理格板分析方法 瀏覽:36
流派研究的方法 瀏覽:430
襯衣短了如何加長改大的方法 瀏覽:654
藍螃蟹的裁剪方法視頻 瀏覽:192
正能量啞鈴鍛煉方法 瀏覽:661
飛機膨脹螺絲使用方法 瀏覽:58
蘋果ipad耗電太快怎麼解決方法 瀏覽:314
鋼筋量計算方法 瀏覽:822
什麼方法不能為圖層添加圖層蒙版 瀏覽:936
棱鏡基座使用方法 瀏覽:496
變速桿安裝方法 瀏覽:845
科目三靠邊停車最簡單的方法對點 瀏覽:986
s7變速箱頓挫解決方法 瀏覽:591