A. 簡便計算題的方法技巧
1/4
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百;
2、補上一個數,能夠與其他數湊整,最後再減去這個數。
3/4
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
4/4
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
B. 速算方法與技巧口訣
速算方法與技巧口訣如下:
1、個位數都是「1」的數相乘
速算口訣:頭乘頭,頭加頭,尾是1(頭加頭如果超過10要進位)
2、十幾乘十幾
速算口訣:頭是1,尾加尾,尾乘尾(超過10要進位)!
3、頭相同,尾互補(尾數相加為10)
速算口訣:頭乘頭加1,尾乘尾佔2位!
4、頭互補,尾相同
速算口訣:頭乘頭加尾,尾乘尾佔2位!
5、11乘任意數
速算口訣:首尾都不動,相加放兩頭!
運演算法則
1、整數加法計演算法則
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
2、整數減法計演算法則
相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。
3、整數乘法計演算法則
先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。
C. 簡便計算的竅門和技巧是什麼
方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,可以「帶符號搬家」。例如:a+b+c=a+c+b、a×b×c=a×c×b等等。
方法二:去括弧法
在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。
方法三:乘法分配律法
分配法:括弧里是加或減運算,與另一個數相乘,注意分配;提取公因式:注意相同因數的提取;注意構造,讓算式滿足乘法分配律的條件。
方法四:拆分法
拆分法屬於為了方便計算把一個數拆成幾個數,這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小。
方法五:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
D. 計算題的速算技巧
計算題的速算技巧
利用湊十法
2.採用整數法
就是將接近10、接近100和接近1000的數看成整數,然後再進行加減運算。例如在解答397+123這個題時,我們可以把397看成是400,然後用400+123可以得出答案為523,最後再減去3,即可得到最後的答案為520。在減法時同樣也可以運用,運算方式也是一樣。
3.使用移位法
把算式當中的數字連同前面的符號一起進行移位,然後再進行計算。這是小學數學口算計算當中經常可以用到的方法,例如3-4+5,很多小朋友並不知道怎麼回答,認為3不能減4,實際上我們把5連同前面的+號一起移動,變換一下成為3+5-4,即可快速得出答案。
除此之外,口算速算方法還有補數法、拆分法、加括弧法等具體的技巧,對於不同層次的學生而言只需要掌握一定的技巧即可。對此,你是怎麼教育小孩子運用速演算法的呢?請留言說一說吧!
E. 數學計算技巧方法
一、加一法———頭相同,個位相加之相加之和等於10.
公式:一個頭加「1」後,頭×頭;尾×尾,連起來。
例:62×68=4216
解:(6+1)×6=42 2×8=16 連起來得4216.
練習題:73×77 28×22 64×66 43×47
二、加尾數法——尾相加,十位相加等於10.
公式:頭×頭加一個尾;尾尾連起來
例:26×86=2236
解:2×8+6=22 6×6=36 連起來得2236
練習題:38×78 47×67 85×25 64×44
三、減1法———個位數是1和9且兩個首數相差1.
公式:用較大數的首數平方減去1,後面連寫99.
例:81(較大數)×79=6399
解:82-1=63 後面連寫99,得6399.
練習題:61×59 71×69 29×31 49×51
四、求兩個一百零幾數的積,一數加另一數尾數法。
公式:一數+另一數尾數;尾×尾, 連起來。
例:105×107=11235
解:105+7=112 5×7=35 連起來得11235.
練習題:108×109 106×104 102×108 103×105
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。 2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。 3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?
文檔沖億季,好禮樂相隨
mini ipad移動硬碟拍立得網路書包
1 解:3+1=4 4×4=16 7×4=28 37×44=1628 註:個位相乘,不夠兩位數要用0佔位。 4.幾十一乘幾十一: 口訣:頭乘頭,頭加頭,尾乘尾。 例:21×41=? 解:2×4=8 2+4=6 1×1=1 21×41=861 5.11乘任意數: 口訣:首尾不動下落,中間之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分別在首尾
2 11×23125=254375 註:和滿十要進一。
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?
F. 簡便運算的技巧和方法有哪些
數學簡便計算方法:
一、裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」。
(3)分母上幾個因數間的差是一個定值。
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、去尾法
在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。
例題
2356-159-256
=2356-256-159
=2100-159
=1941
算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256,可使計算簡便。
五、提取公因式法
這個方法實際上是運用了乘法分配律,將相同因數提取出來。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2
G. 加減法簡便運算的技巧和方法
加減法簡便運算的技巧和方法如下:
算基森沖術運算介紹:
算術運算簡稱運算。指按照規定的法則和順序對式題或算式進行運算,並求出結果的過程。包括:加法、減法、乘法、除法、乘方、開方等幾種運算形式。其中加減為一級運算,乘除為二級運算,乘方、開方為三級運算。在一道算式中,如果有幾級運算存在,則應先進行高級運算,再進行低一級的運算。
如:3+22×4=3+4×4=3+16=19;如春中果只存在同級運算;則按從左至右的順序進行;如果算式中有括弧,則應先算括弧里邊,再按上述規則進行計算。如:(3+2)2×4=52×4=100。運算和計算略有區別,計算是指把橫式中的數按運算符號和規定的順序求得結果,可以按運演算法則,也可以按口算或其他簡便的方式直接求得結果。而運算則是指求得結果的過程。
H. 15種巧算方法
我們練習速算與巧算的目的是:
1:會演算法--筆算訓練,
現今我國的教育體制是應試教育,檢驗學生的標準是考試成績單,那麼學生的主要任務就是應試,答題,答題要用筆寫,筆算訓練是教學的主線。與小學數學計算方法一致,不運用任何實物計算,無論橫式,豎式,連加連減都可運用自如,用筆做計算是啟動智慧快車的一把金鑰匙。
2:明算理-算理拼玩,
會用筆寫題,不但要使孩子會演算法,還要讓孩子明白算理。 使孩子在拼玩中理解計算的算理,突破數的計算。孩子是在理解的基礎上完成的計算。
3:練速度--速度訓練,
會用筆算題還遠遠不夠,小學的口算要有時間限定,是否達標要用時間說話,也就是會算題還不夠,主要還是要提速。
4:啟智慧--智力體操,
不單純地學習計算,著重培養孩子的數學思維能力,全面激發左右腦潛能,開發全腦。經過快心算的訓練,學前孩子可以深刻的理解數學的本質(包含),數的意義(基數,序數,和包含),數的運算機理(同數位的數的加減,)數學邏輯運算的方式,使孩子掌握處理復雜信息分解方法,發散思維,逆向思維得到了發展。孩子得到一個反應敏銳的大腦。
下面就來看看速算與巧算的10種方法吧!
一、順逆相加:用「順逆相加」算式可求出若干個連續數的和。 例如著名的大數學家高斯(德國)小時候就做過的「百數求和」題,可以計算為
二、湊整巧算:用「湊整方法」,常常能使計算變得比較簡便、快速。
三、恆等變形:是一種重要的思想和方法,也是一種重要的解題技巧。 利用我們學過的知識,去迚行有目的的數學變形,常常能使題目很快地獲得解答。
四、拆數加減:在分數加減法運算中,把一個分數拆成兩個分數相減 或相加,使隱含的數量關系明朗化,並抵消其中的一些分數,往往可 大大地簡化運算。
(1) 拆成兩個分數相減。例如:
五、先借後還:「先借後還」是一條重要的數學解題思想和解題技巧。
六、由小推大:一種數學思維方法,也是一種速算、巧算技巧。 遇到有些題數目多,關系復雜時,我們可以從數目較小的特殊情況入手,研究題 目特點,找出一般規律,再推出題目的結果。例如:
七、巧妙試商:除數是兩位數的除法,可以採用一些巧妙試商方法, 提高計算速度
八、同分子分數加減 同分子分數的加減法,有以下的計算規律: 分子相同,分母互質的兩個分數相加(減)時,它們的結果是用原分母的積作分 母,用原分母的和(戒差)乘以這相同的分子所得的積作分子。 分子相同,分母丌是互質數的兩個分數相加減,也可按上述規律計算,只是最後 需要注意把得數約簡為既約(最簡)分數。
九、個數折半:下面的幾種情況下,可以運用「個數折半」的方法, 巧妙地計算出題目的得數
I. 小學數學加減法速算方法與技巧
小學學生的加減法運算能力是非常重要的數學能力,運算能力不僅包括理解運算算理,掌握運算方法,還包括在遇到問題時能夠找到合理簡便的運算途徑。
速算不僅能簡化計算過程,化繁為簡,化難為易,同時又會提高計算效率。
因此在學習過程中,不僅需要掌握計演算法則,還需要學會一些運算技巧。
湊整"先計算
在進行加法運算時,若能對算式的各項恰當地分組,會使計算過程大大簡化。兩個數相加,若能恰好湊成整十、整百、整千、整萬…則先計算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"補數";79叫21的"補數",44也叫56的"補數",也就是說兩個數互為"補數"。
例題1.計算53+55+47
解:原式=(53+47)+55
=155
計算23+39+61
解:原式=23+(39+61)
=23+100
=123
對於不能直接湊整的,可以把其中一個數進行拆分,再湊整。
例題2.計算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
計算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
計算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
對於沒有直接湊整的數的,可以先湊整,最後再減去湊整的數。
例題3.計算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差數列
計算等差連續數(等差數列)的和相鄰的兩個數的差都相等的一串數就叫等差連續數,又叫等差數列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差連續數
1、等差連續數的個數是奇數時,它們的和等於中間數乘以個數。
例題4.計算1+2+3+4+5+6+7+8+9
解:原式=5×9(中間數是5,共9個數)
=45
計算1+3+5+7+9+11+13
解:原式=7×7(中間數是7,共7個數)
=49
計算2+4+6+8+10
解:原式=6×5(中間數是6,共5個數)
=30
2、等差連續數的個數是偶數時,它們的和等於首數與末數之和乘以個數的一半。
例題5.計算1+2+3+4+5+6+7+8+9+10
共10個數,個數的一半是5,首數是1,末數是10。
解:原式=(1+10)×5
=11×5
=55
計算1+3+5+7+9+11+13+15
共8個數,個數的一半是4,首數是1,末數是15。
解:原式=(1+15)×4
=16×4
=64
計算2+4+6+8+10+12
共6個數,個數的一半是3,首數是2,末數是12。
解:原式=(2+12)×3
=14×3
=42
基準數法
先觀察各個加數的大小接近什麼數字,再把每個加數先按接近的數字相加,然後再把少算的加上,把多算的減去。
例題6.計算23+22+24+18+19+17
通過觀察發現所有的加項比較接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
計算103+102+101+99+98
所有加項比較接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
減法中的巧算
1、把幾個互為"補數"的減數先加起來,再從被減數中減去。
例題7.計算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
計算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先減去那些與被減數有相同尾數的減數。
例題8.計算4622-(622+149)
解:原式=4000-149
=3851
3、利用"補數"先湊整,再運算(注意把多加的數再減去,把多減的數再加上)。
例題9.計算505-397
解:原式=500+5-400+3(把多減的 3再加上)
=108
計算523-289
解:原式=523-300+11(把多減的11再加上)
=223+11
=234
計算358+997
解:原式=358+1000-3(把多加的3再減去)
=1355
加減混合式的運算
1、去括弧和添括弧的法則
在只有加減運算的算式里,如果括弧前面是"+"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都不變;如果括弧前面是"-"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都要改變,"+"變"-","-"變"+"。
例題10.計算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
計算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、帶符號"搬家"
例題11.計算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每個數前面的運算符號是這個數的符號,如+47,-145,+53。而545前面雖然沒有符號,應看作是+545。
3、兩個數相同而符號相反的數可以直接"抵消"掉
例題12.計算18+2-18+4
解:原式=18-18+2+4
=6