A. 分塊行列式的計算公式是什麼
一般行列式如果其各項數值不太大的話,可根據行列式「Krj+ri」和「Kcj+ci」不改變行列式值的性質將行列式化成上三角形和下三角形,用乘對角線元素的辦法求行列式的值。
相當於矩陣的初等變換。但那時並沒有現今理解的矩陣概念,雖然它與現有的矩陣形式上相同,但在當時只是作為線性方程組的標准表示與處理方式。
分塊矩陣是高等代數中的一個重要內容,是處理階數較高的矩陣時常採用的技巧,也是數學在多領域的研究工具。
對矩陣進行適當分塊,可使高階矩陣的運算可以轉化為低階矩陣的運算,同時也使原矩陣的結構顯得簡單而清晰,從而能夠大大簡化運算步驟,或給矩陣的理論推導帶來方便。有不少數學問題利用分塊矩陣來處理或證明,將顯得簡潔、明快。
B. 分塊行列式的計算公式是什麼
分塊行列式的計算公式是:」Krj+ri」和「Kcj+ci」。
將一個矩陣用若干條橫線和豎線分成許多個小矩陣,將每個小矩陣稱為這個矩陣的子塊,以子塊為元素的形式上的矩陣稱為分塊矩陣。
性質:
①同結構的分塊上(下)三角形矩陣的和(差)、積(若乘法運算能進行)仍是同結構的分塊矩陣。
② 數乘分塊上(下)三角形矩陣也是分塊上(下)三角形矩陣。
③ 分塊上(下)三角形矩陣可逆的充分必要條件是的主對角線子塊都可逆;若可逆,則的逆陣也是分塊上(下)三角形矩陣。
④ 分塊上(下)三角形矩陣對應的行列式。