導航:首頁 > 計算方法 > 數學做題計算方法

數學做題計算方法

發布時間:2023-07-04 19:14:32

❶ 小學數學12種速算技巧

小學數學12種速算技巧如下:

1、筆算兩位數加法,要記三條,相同數位對齊,從個位加起,個位滿10向十位進。

2、筆算兩位數減法,要記三條,相同數位對齊,從個位減起,個位不夠減從十位退1,在個位加10再減。

3、混合運算計演算法則,在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算,在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減,算式里有括弧的要先算括弧裡面的。

4、四位數的讀法,從高位起按順序讀,千位上是幾讀幾千,百手差位上是幾讀幾百,以此類推,中間有一個0或畢埋皮兩個0隻讀一個「零」,末位不管有幾個0都不讀。

5、四位數寫法,從高位起,按照順序寫,幾千就在千位上寫幾,幾百就在百位上寫幾,以此類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。

6、四位數減法也要注意3條,相同數位對齊,從個位減起,哪一位數不夠減,從前位退1,在本位加10再減。

7、一位數乘多位數乘法法則,從個位起,用一位數依次乘多位數中的每一位數,哪一位上乘得的積滿幾十就向前進幾。

8、除數是一位數的除法法則,從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數,除數除到哪一位,就把商寫在那一位上面,每求出一位商,餘下的數必須比除數小。

9、一個因數是兩位數的乘法法則,先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊,再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊,然後把兩次乘得的數加起來。

10、除數是兩位液指數的除法法則,從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,除到被除數的哪一位就在哪一位上面寫商,每求出一位商,餘下的數必須比除數小。

11、萬級數的讀法法則,先讀萬級,再讀個級,萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字,每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。

12、多位數的讀法法則,從高位起,一級一級往下讀,讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字,每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。

❷ 數學做題的方法及技巧

數學做題的方法及技巧

數學做題的方法及技巧,數學一直都是令許多學生頭疼的科目,在考試中我們只能盡量做到不會做的題目也能得分,甚至蒙出正確的答案,只要掌握一定的數學答題技巧,也是有可能實現的,接下來一起看看數學做題的方法及技巧。

數學做題的方法及技巧1

一、熟悉習題中所涉及的內容,包括定義、公式、定理和規則。

解題、做練習只是學習過程中的一個環節,而不是學習的全部,你不能為解題而解題。解題是為閱讀服務的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規則,能否利用這些概念、定理、公式和規則解決實際問題。解題時,我們的概念越清晰,對公式、定理和規則越熟悉,解題速度就越快。

因此,我們在解題之前,應通過閱讀教科書和做簡單的練習,先熟悉、記憶和辨別這些基本內容,正確理解其涵義的本質,接著馬上就做後面所配的練習,一刻也不要停留。

二、熟悉習題中所涉及到的以前學過的知識,以及與其他學科相關的知識。

有時候,我們遇到一道不會做的習題,不是我們沒有學會現在所要學會的內容,而是要用到過去已經學過的一個公式,而我們卻記得不很清楚了;或是需用到一個特殊的定理,而我們卻從未學過,這樣就使解題速度大為降低。

這時,我們應先補充一些必須補充的相關知識,弄清楚與題目相關的概念、公式或定理,然後再去解題,否則就是浪費時間,當然,解題速度就更無從談起了。

三、熟悉基本的解題步驟和解題方法。

解題的過程,是一個思維的過程。對一些基本的、常見的問題,前人已經總結出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習題的答案。否則,走了彎路就多花了時間。

數學做題的方法及技巧2

選擇題蒙法

1、選擇題出現數值的選項中,含最多相同數值的選項為正確答案。如四個選項:A、3 B、3/11 C、3/13 D、2/11。「3」和「11」出現的次數最多,故選選項B。

2、選擇題出現數值的選項中,數值最大的和數值最小的一般不是正確選項,答案從中間數值的兩個選項中選。

3、選擇題出現正負數值的選項中,答案必定是那兩個選項的其中之一。

4、選擇題中,若出現概念題。如果有課外的或是課內很少見的說法,一般都是正確的說法。

5、選擇題,不會連續出現3個相同的答案。一般而言,選項A出現的概率最低。而且,第一題和最後一題一般不為選項A,最後兩道題多為選項B和選項C。

填空題蒙法

1、如果出現求長度或者求角度的選擇題,並且試卷上有圖像的。可以直接用刻度尺或者量角器去衡量。

2、有關線性規劃的選擇題,不用畫圖,直接計算。用時更短,准確率更高!

3、遇上求數值、實在不會做的選擇題。如果明顯是整數答案的,可以選寫「0、1、-1」中的其中一個數值;如果明顯是分數答案的.,可以選寫「1/2、1/3、2/3」中的其中一個數值;如果明顯是含根號值數答案的,可以選寫「根號2、根號3「等簡單的數值。

4、一般來說,題目復雜難懂的,答案的數值往往是很簡單的。反之就是比較復雜的。

解答題蒙法

1,證明題中,如果有某一個結論實在不知道怎麼推導出來,可以把題目中所有的條件抄一遍,然後直接寫出你想要的結論即可(情況好的話一分不扣!情況不好的話,也就扣一些步驟分)

2,證明題中,第二第三題可以直接引用第一題的結論(即使第一題是要你證明的結論,你沒有證明出來也可以用!)

3、一般而言,壓軸題的第三小問,都要用第一小題中的結論。(所以,壓軸題的第三小問,即使做不出來,也要把第一小題中的結論寫上去,可以得一到兩分的步驟分!)

4、空間幾何證明題中,即使不會證明,也要建立空間直角坐標系,並寫上你建系時的套話。

5、實在一點兒都不會做的題目,把所有你覺得用得上的、跟本題有關的公式定理都寫上去。並且,每一小題都要重復寫上(意思就是:第一小題寫了,第二、第三小題也要寫!)

數學做題的方法及技巧3

數學答題技巧

1.適用條件

[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大於1。

註:上述公式適合一切圓錐曲線。如果焦點內分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。

2.函數的周期性問題(記憶三個)

(1)若f(x)=-f(x+k),則T=2k;

(2)若f(x)=m/(x+k)(m不為0),則T=2k;

(3)若f(x)=f(x+k)+f(x-k),則T=6k。

注意點:a.周期函數,周期必無限b。周期函數未必存在最小周期,如:常數函數。c.周期函數加周期函數未必是周期函數,如:y=sinxy=sin派x相加不是周期函數。

3.關於對稱問題(無數人搞不懂的問題)總結如下

(1)若在R上(下同)滿足:f(a+x)=f(b-x)恆成立,對稱軸為x=(a+b)/2

(2)函數y=f(a+x)與y=f(b-x)的圖像關於x=(b-a)/2對稱;

(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關於(a,b)中心對稱

4.函數奇偶性

(1)對於屬於R上的奇函數有f(0)=0;

(2)對於含參函數,奇函數沒有偶次方項,偶函數沒有奇次方項

(3)奇偶性作用不大,一般用於選擇填空

5.數列爆強定律

(1)等差數列中:S奇=na中,例如S13=13a7(13和7為下角標);

(2)等差數列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

(3)等比數列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立

(4)等比數列爆強公式:S(n+m)=S(m)+qmS(n)可以迅速求q

6.數列的終極利器,特徵根方程

首先介紹公式:對於an+1=pan+q(n+1為下角標,n為下角標),

a1已知,那麼特徵根x=q/(1-p),則數列通項公式為an=(a1-x)p(n-1)+x,這是一階特徵根方程的運用。

二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數列可以構造(兩邊同時加數)

❸ 做數學題的方法

做數學題的方法

做數學題的方法,數學題對於很多人來說應該是非常難的題吧,有的人怎麼做也做不來數學題,花了大量的時間精力也做不出來,那麼有哪些做數學題的方法呢?趕緊閱讀本篇文章,來了解一下吧。

做數學題的方法1

幾何解題技巧考點:

這類題主要是考察咱們對空間物體的感覺,希望大家在平時學習過程中,多培養一些立體的、空間的感覺,將自己設身處地於那麼一個立體的空間中去,這類題對文科生來說,難度都比較簡單,但是對理科生來說,可能會比較復雜一些,特別是在二面角的求法上,對理科生來說是一個巨大的挑戰,它需要理科生能對兩個面夾角培養出感情來,這樣輔助線的做法以及邊長的求法就變得如此之簡單了。這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計算題,包括棱錐體的體積公式計算、點到面的距離、有關二面角的計算(理科生掌握)

證線面平行如直線與面有兩種方法:

一種方法是在面中找到一條線與平行即可(一般情況下沒有現成的線存在,這個時候需要我們在面做一條輔助線去跟線平行,一般這條輔助線的作法就是找中點);另一種方法就是過直線作一個平面與面平行即可,輔助面的作法也基本上是找中點。證面面平行這類題比較簡單,即證明這兩個平面的兩條相交線對應平行即可。

毀慶做數學題的方法2

圓錐曲線解題技巧:

這類題型,其實難度真的不是很大,我個人理解主要是考大家的計算能力怎麼樣,還有就是對題目的理解能力,同時也希望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關系,還有就是橢圓、雙曲線、拋物線的兩種定義,如果你現在還不知道,趁早去記一下,不晌宴然考試的時候都不知道的哈。這種類型的題一般都是以下幾種出法:第一個問一般情況就是求圓錐曲線方程或者就是求某一個點的軌跡方程,第二個問一般都是涉及到直線的問題,要麼就是求范圍,要麼就是求定值,要麼就是求直線方程解題思路:

求圓錐曲線方程:

一般情況下題目有兩種纖謹握求法,一種就是直接根據題目條件來求解(如題目告訴你曲線的離心率和過某一個點坐標),另一種就是隱含的告訴我們橢圓的定義,然後讓我們去琢磨其中的意思,去寫出曲線的方程,這種問法就比較難點,其實也主要是看我們的基本功底怎麼樣,對基礎扎實的同學來說,這種問法也不是問題的。求軌跡方程:這種問題需要我們首先對要求點的坐標設出來A(x,y),然後用A點表示出題目中某一已知點B的坐標,然後用表示出來的點坐標代入點B的`軌跡方程中,這樣就可以求出A點的軌跡方程了,一般求出來都是圓錐曲線方程,如果不是,你就可能錯了。

函數導數解題技巧:

這種類型的題主要是考大家對導數公式的應用,導數的含義,明確導數可以用來干什麼,如果你都不知道導數可以用來干什麼,你還談什麼做題呢。在導數這塊,我是希望大家都能盡量的多拿一些分數,因為其難度不是很大,主要你用心去學習了,記住方法了,這個分數對我們來說都是可以小菜一碟的。最值、單調性(極值)、未知數的取值范圍(不等式)、未知數的取值范圍(交點或者零點)

最值、單調性(極值):

首先對原函數求導,然後令導函數為零求出極值點,然後畫出表格判斷出在各個區間的單調性,最後得出結論。未知數的取值范圍(不等式),其實它就是一種一種變相的求最值問題,不知道大家還記得么,記住我講課的表情,未知數放在一邊,把已知的數放在另外一邊,求出相應的最值,咱們就勝利了,這個種看起來很復雜,其實很簡單,你說呢。

未知數的取值范圍(交點或者零點):

這種要是沒有掌握方法的人,覺得,哇,怎麼就那麼難呀,其實不然,很簡單的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數放在一邊,把知道的數放在一邊去,這樣去求出已知數的最值,然後簡單的畫一個圖形我們就可以分析出未知數的取值范圍了。

❹ 做數學題有何技巧方法

有一句話,人逼急了什麼事都做的出來,但是數學題做不出來,尤其遇到難題就腦袋空空,毫無頭緒。那麼如何讓數學題做起來變得容易和輕松呢?下面給大家分享一些關於做數學題有何技巧 方法 ,希望對大家有所幫助。

一.選擇題答題攻略

1、剔除法

利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

2、特殊值檢驗法

對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

3、極端性原則

將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。

4、順推破-解法

利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。

5、逆推驗證法

將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。

6、正難則反法

從題的正面解決比較難時,可從選項出發逐步逆推找出符合條件的結論,或從反面出發得出結論。

7、數形結合法

由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。

8、遞推歸納法

通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。

9、特徵分析法

對題設和選擇項的特點進行分析,發現規律,歸納得出正確判斷的方法。

10、估值選擇法

有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。

二.填空題答題攻略

數學填空題,絕大多數是計算型(尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。

1、直接法

這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。

2、特殊化法

當填空題的結論唯一或其值為定值時,我們只須把題中的參變數用特殊值(或特殊函數、特殊角、特殊數列、圖形特殊位置、特殊點、特殊方程、特殊模型等)代替之,即可得到結論。

3、數形結合法

藉助圖形的直觀形,通過數形結合,迅速作出判斷的方法稱為圖像法。文氏圖、三角函數線、函數的圖像及方程的曲線等,都是常用的圖形。

4、等價轉化法

通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出正確的結果。


做數學題有何技巧方法相關 文章 :

★ 做數學選擇題的十種技巧

★ 做數學的思路技巧方法

★ 做六年級數學題的學習方法和做題方法

★ 數學選擇題答題的十大方法

★ 做好高考數學題的12種方法

★ 數學選擇題八大解題方法

★ 做小學數學作業各類題型的方法

★ 學好數學方法和技巧是什麼

★ 做數學蒙題的技巧

❺ 數學快數學快速計算方法

5大數學速算技巧,讓孩子做題又快又准確
如果說學語文,最重要的基礎是字詞,那麼學數學,最重要的基礎就是口算了。當代教育家,數學特級教師邱學華老師曾經說過:「計算要過關,必須抓口算。」

5大數學速算技巧,讓孩子做題又快又准確
那麼,怎樣才能算得既快又准確呢?只要熟練掌握計演算法則和運算順序,根據題目本身的特點,使用合理、靈活的計算方法,化繁為簡,化難為易,就能算得又快又准確。先為大家介紹5個速算技巧:

5大數學速算技巧,讓孩子做題又快又准確
1. 方法一:帶符號搬家法

當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。

例如:

23-11+7=23+7-11

4×14×5=4×5×14

10÷8×4=10×4÷8

2. 方法二:結合律法

加括弧法

(1)在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。

例如:

23+19-9=23+(19-9)

33-6-4=33-(6+4)

(2)在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。

例如:

2×6÷3=2×(6÷3)

10÷2÷5=10÷(2×5)

去括弧法

(1)在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。

例如:

17+(13-7)=17+13-7

23-(13-9)=23-13+9

23-(13+5)=23-13-5

(2)在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)

例如:

1×(6÷2)=1×6÷2

24÷(3×2)=24÷3÷2

24÷(6÷3)=24÷6×3

3. 方法三:乘法分配律法

分配法

括弧里是加或減運算,與另一個數相乘,注意分配。

例如:

8×(5+11)=8×5+8×11

提取公因式法

注意相同因數的提取。

例如:

9×8+9×2=9×(8+2)

4. 方法四:湊整法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦,有借有還,再借不難嘛。

例如:

99+9=(100-1)+(10-1)

5. 方法五:拆分法

拆分法就是為了方便計算,把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。

例如:

32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

要想讓孩子熟練運用速算方法,需要通過持之以恆的練習,提升計算能力,這樣,無論平時做作業還是考試都能游刃有餘。

❻ 數學計算技巧方法

一、加一法———頭相同,個位相加之相加之和等於10.
公式:一個頭加「1」後,頭×頭;尾×尾,連起來。
例:62×68=4216
解:(6+1)×6=42 2×8=16 連起來得4216.
練習題:73×77 28×22 64×66 43×47
二、加尾數法——尾相加,十位相加等於10.
公式:頭×頭加一個尾;尾尾連起來
例:26×86=2236
解:2×8+6=22 6×6=36 連起來得2236
練習題:38×78 47×67 85×25 64×44
三、減1法———個位數是1和9且兩個首數相差1.
公式:用較大數的首數平方減去1,後面連寫99.
例:81(較大數)×79=6399
解:82-1=63 後面連寫99,得6399.
練習題:61×59 71×69 29×31 49×51
四、求兩個一百零幾數的積,一數加另一數尾數法。
公式:一數+另一數尾數;尾×尾, 連起來。
例:105×107=11235
解:105+7=112 5×7=35 連起來得11235.
練習題:108×109 106×104 102×108 103×105
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。 2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。 3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?
文檔沖億季,好禮樂相隨
mini ipad移動硬碟拍立得網路書包
1 解:3+1=4 4×4=16 7×4=28 37×44=1628 註:個位相乘,不夠兩位數要用0佔位。 4.幾十一乘幾十一: 口訣:頭乘頭,頭加頭,尾乘尾。 例:21×41=? 解:2×4=8 2+4=6 1×1=1 21×41=861 5.11乘任意數: 口訣:首尾不動下落,中間之和下拉。 例:11×23125=? 解:2+3=5 3+1=4 1+2=3 2+5=7 2和5分別在首尾
2 11×23125=254375 註:和滿十要進一。
一、兩位數乘兩位數。 1.十幾乘十幾: 口訣:頭乘頭,尾加尾,尾乘尾。 例:12×14=? 解:1×1=1 2+4=6 2×4=8 12×14=168 註:個位相乘,不夠兩位數要用0佔位。
2.頭相同,尾互補(尾相加等於10): 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:23×27=? 解:2+1=3 2×3=6 3×7=21 23×27=621 註:個位相乘,不夠兩位數要用0佔位。
3.第一個乘數互補,另一個乘數數字相同: 口訣:一個頭加1後,頭乘頭,尾乘尾。 例:37×44=?

閱讀全文

與數學做題計算方法相關的資料

熱點內容
如何做到退熱的方法 瀏覽:698
上海核桃粉芝麻的食用方法 瀏覽:553
如何判斷直男最好方法 瀏覽:971
蘋果7手機許可權在哪裡設置方法 瀏覽:597
心理分析方法的咨詢目標 瀏覽:530
如何治好胃病方法 瀏覽:590
羅漢百合種植方法 瀏覽:329
肩胛肌放鬆訓練方法 瀏覽:248
營養口感訓練方法 瀏覽:792
如何評價生物樣品的分析方法 瀏覽:145
畫圖技巧和方法 瀏覽:641
塑封機使用方法圖解 瀏覽:172
痛經原因以及解決方法 瀏覽:483
斑圖片與治療方法 瀏覽:645
臀肌強化訓練方法 瀏覽:821
底卡骨痛的鍛煉方法 瀏覽:328
治療失眠有那些方法 瀏覽:862
線槽燈頂安裝方法 瀏覽:971
亞麻調和油食用方法 瀏覽:502
維修電磁爐燈泡串連接方法 瀏覽:477