Ⅰ 小學口算方法及技巧
一,口算技巧:
1.加法類口算:湊整
這類計算不管兩個加數多少一陪悉帶定要先把一個加數湊成整,再將剩餘的數加上去,保證結果的正確率
2.減法類口算:減整補差
這類計算時,將減數湊成整,運算後把補的部分加回來就是最後結果
3.乘法類口算:巧記口訣,留意零蘆蘆
例如:4x25、4x125、8x25、8x125等能夠得到整結果的式子;而且乘法運算多是乘法口訣的變式,留意零
4.除法類口算:乘法逆運算
2.大聲讀題
①對於容易看錯數字、符號的孩子,感知能力稍微差些,有個非常高效的鍛煉感知能力的方式,那就是「大聲讀題」。
②朗讀的時候需要更高的注意力,比默讀的正確率要高很多,讀算的訓練多了,孩子的反應能力、計算速度等,都要快上許多,孩子因粗心而出現錯誤的概率自然減少。
3.大量的練習
①孩子注意力集中了、對口算感興趣了,接下來,就是要提升熟練度。在提升熟練度這一塊,家長需要先判斷孩子「會不會算」,然後再讓孩子「大量算」。
②會不會算低年級的口算,最基礎的是需要掌握借十法、湊十法、口訣等方法,只有學會這些口算方法,才能提升口算的正確率以及效率。
1、數數坦首攔法。以15-8=7為例,孩子很可能會利用手指頭,或者小積木等,從15裡面一個一個的去減,減掉8個後芹畝,發現還剩下7個。這種演算法是最原始也是最基本的方法,但是較費時。剛開始可以允許孩子用這種方法,因為對於學前和低年級的孩子來說,他們需要藉助一些具體的、形象的事物來幫助他們進行具象到抽象的演繹,所以很多孩子會藉助掰手指或者小積木等來完成計算,這是正常的表現。
2、做減法想加法。比如我們要算15-8=?,我們可以利用加法和減法之間的關系,只要知道8加幾等於15,然後由此推出15減8就等於幾。這種方法最省時,但也最難。孩子不但要對20以內的進位加法很熟練,而且要有一定的推理能力和逆向思維能力。
3、破十法。比如13-5=?那麼第一步就是將13拆成10和3,我們知道10-5等於5,再用5加上3最後等於8。也就是說將十幾拆成十和幾,那麼減去一個數的得數就為這個幾加上減數的好朋友。比如17-9=?就是將17拆成10和7,7加上9的好朋友1就等於8。
4、平十法(砍尾法)讓胡。以15-8=?為例,可以將其拆成連減法來計算,15先減去5,再減去3。為什麼要這樣算呢?因為如果你問孩子15-5=?26-6=?39-9=?98-8=?你會發現孩子可以很快做出答案。也就是說個位相同的兩個數(俗稱尾巴)相減好算,把尾巴砍了就行了,比如26減去6就是把尾巴6砍了剩下20。然後用一個整十的數減去一個數,也非常好算。
Ⅲ 小學數學快速計算方法是什麼
一、加法交換律與加法結合律
加法交換律:
兩個數相加,交換加數的位置,它們的和不變。即a+b=b+a
一般地,多個數相加,任意改變相加的次序,其和不變。
a+b+c+d=d+b+a+c
加法結合律:
幾個數相加,先把前兩個數相加,再加上第三個數;或者,先把後兩個數相加,再與第一個數相加,它們的和不變。即:a+b+c=(a+b)+c=a+(b+c),
二、速算與巧算中常用的三大基本思想
1、湊整(目標:整十整百整千...)
2、分拆(分拆後能夠湊成整十整百整千...)
3、組合(合理分組再組合)
三、常見方法
湊整法
兩個數相加,若能恰好湊成整十、整百、整千、整萬…,就把其中的一個數叫做另一個數的"補數",利用"補數"巧算加法,通常稱為"湊整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"補數";89叫11的"補數",11也叫89的"補數"。也就是說兩個數互為"補數"。
對於一個較大的數,如何能很快地算出它的"補數"來呢?一般來說,可以這樣"湊"數:從最高位湊起,使各位數字相加得9,到最後個位數字相加得10。
如:87655→12345,46802→53198,87362→12638。
利用"補數"巧算加法,通常稱為"湊整法"。
巧算下面各題:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
魏德武速算
魏氏速算它可以不藉助任何計算工具在很短時間內就能使學習者,用一種思維,一種方法快速准確地掌握任意數加、減、乘、除的速算方法。從而達到快速提高學習者口算和心算的速算能力。
1、加法速算:計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣——「本位相加(針對進位數)減加補,前位相加多加一」就可以徹底解決任意位數從高位數到低位數的加法速算方法,比如:
(1),67+48=(6+5)×10+(7-2)=115;
(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2、減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣——「本位相減(針對借位數)加減補,前位相減多減一」就可以徹底解決任意位數從高位數到低位數的減法速算方法,比如:
(1),67-48=(6-5)×10+(7+2)=19;
(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
以上內容參考網路-數學速演算法
Ⅳ 小學生數學快速計算的幾個方法
1、十幾乘十幾
口訣:十幾+另一數的個位,尾X尾,相加的和加上相乘的積,個位與十位對齊,注意要進位
如:15X16=240
用口訣計算:15+6=21,5X6=30,210+30=240
13X14=182用口訣計算:13+4=17,3X4=12,170+12=182
大家可以試著計算
11X13,12X16,16X17
2、個位與十位互換的兩位數相加
口訣:(個位+十位)X11
如:67+76=143用口訣計算:(6+7)X11=143
93+39=132用口訣計算:(9+3)X11=132
大家可以試著計算
34+43,56+65,78+87
3、個位與十位的兩位數相減
口訣:(被減數十位-被減數個位)X9
如:43-34=9用口訣計算:(4-3)X9=9
95-59=36用口訣計算:(9-5)X9=36
大家可以試著計算76-67,53-35,42-24
Ⅳ 小學數學加減法速算方法與技巧
小學學生的加減法運算能力是非常重要的數學能力,運算能力不僅包括理解運算算理,掌握運算方法,還包括在遇到問題時能夠找到合理簡便的運算途徑。
速算不僅能簡化計算過程,化繁為簡,化難為易,同時又會提高計算效率。
因此在學習過程中,不僅需要掌握計演算法則,還需要學會一些運算技巧。
湊整"先計算
在進行加法運算時,若能對算式的各項恰當地分組,會使計算過程大大簡化。兩個數相加,若能恰好湊成整十、整百、整千、整萬…則先計算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"補數";79叫21的"補數",44也叫56的"補數",也就是說兩個數互為"補數"。
例題1.計算53+55+47
解:原式=(53+47)+55
=155
計算23+39+61
解:原式=23+(39+61)
=23+100
=123
對於不能直接湊整的,可以把其中一個數進行拆分,再湊整。
例題2.計算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
計算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
計算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
對於沒有直接湊整的數的,可以先湊整,最後再減去湊整的數。
例題3.計算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差數列
計算等差連續數(等差數列)的和相鄰的兩個數的差都相等的一串數就叫等差連續數,又叫等差數列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差連續數
1、等差連續數的個數是奇數時,它們的和等於中間數乘以個數。
例題4.計算1+2+3+4+5+6+7+8+9
解:原式=5×9(中間數是5,共9個數)
=45
計算1+3+5+7+9+11+13
解:原式=7×7(中間數是7,共7個數)
=49
計算2+4+6+8+10
解:原式=6×5(中間數是6,共5個數)
=30
2、等差連續數的個數是偶數時,它們的和等於首數與末數之和乘以個數的一半。
例題5.計算1+2+3+4+5+6+7+8+9+10
共10個數,個數的一半是5,首數是1,末數是10。
解:原式=(1+10)×5
=11×5
=55
計算1+3+5+7+9+11+13+15
共8個數,個數的一半是4,首數是1,末數是15。
解:原式=(1+15)×4
=16×4
=64
計算2+4+6+8+10+12
共6個數,個數的一半是3,首數是2,末數是12。
解:原式=(2+12)×3
=14×3
=42
基準數法
先觀察各個加數的大小接近什麼數字,再把每個加數先按接近的數字相加,然後再把少算的加上,把多算的減去。
例題6.計算23+22+24+18+19+17
通過觀察發現所有的加項比較接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
計算103+102+101+99+98
所有加項比較接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
減法中的巧算
1、把幾個互為"補數"的減數先加起來,再從被減數中減去。
例題7.計算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
計算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先減去那些與被減數有相同尾數的減數。
例題8.計算4622-(622+149)
解:原式=4000-149
=3851
3、利用"補數"先湊整,再運算(注意把多加的數再減去,把多減的數再加上)。
例題9.計算505-397
解:原式=500+5-400+3(把多減的 3再加上)
=108
計算523-289
解:原式=523-300+11(把多減的11再加上)
=223+11
=234
計算358+997
解:原式=358+1000-3(把多加的3再減去)
=1355
加減混合式的運算
1、去括弧和添括弧的法則
在只有加減運算的算式里,如果括弧前面是"+"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都不變;如果括弧前面是"-"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都要改變,"+"變"-","-"變"+"。
例題10.計算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
計算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、帶符號"搬家"
例題11.計算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每個數前面的運算符號是這個數的符號,如+47,-145,+53。而545前面雖然沒有符號,應看作是+545。
3、兩個數相同而符號相反的數可以直接"抵消"掉
例題12.計算18+2-18+4
解:原式=18-18+2+4
=6