① tan的所有計算公式是什麼啊
tan的所有公式有:
半形公式。
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。
倍角公式。
tan2α=(2tanα)/(1-tanα^2)。
降冪公式。
tan^2(α)=(1-cos(2α)純此扒/(1+cos(2α)。
萬能公式。
tanα=2tan(α/2)/。
兩角和與差公式。
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)。
和差化積公式。
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)。
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)。
三角函數簡介
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是扒喊任意角的集合與一個比值做昌的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。
另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
由於三角函數的周期性,它並不具有單值函數意義上的反函數。
三角函數在復數中有較為重要的應用。在物理學中,三角函數也是常用的工具。
② tan怎麼計算的啊
tan的計算:例如直角三角形之底為x,高為y,斜邊為z,底與斜邊之間的夾角為a,按定義:譽禪李
tan a = y / x(直角三角形高除以直角三角形底邊)
sina = y / z (直角三角形高除以直角三角形斜邊)
cos a= x / z (直角三角形底邊除以直角三角形斜邊)
擴展襲消資料
設慶遲tan(A/2)=t
sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)
cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)
就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當要求一串函數式最值的時候,就可以用萬能公式,推導成只含有一個變數的函數,最值就很好求了.
③ tan怎麼算,計算公式是什麼
tan計算公式是tana=y/x,直角三角形之底為x,高為y,斜邊為z,底與斜邊之間的夾角為a。tan一般指正切,在Rt△ABC(直角三角形)中,∠陪弊C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊蘆襪族b,正切好扒函數就是tanB=b/a,即tanB=AC/BC。
三角函數是數學中屬於初等函數中的超越函數的一類函數。它們的本質是任意角的集合與一個比值的集合的變數之間的映射。通常的三角函數是在平面直角坐標系中定義的,其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到復數系。
tan(360+a)=tana
tan(-a)=-tana
tan(360-a)=tan(-a)
tan(180-a)=-tana
tan(180+a)=tana
tan(90+a)=-cota
tan(90-a)=cota
④ tan的計算公式是什麼
tan=sin/cos (cos≠0)。
(1)在直角三角形中,∠α(不是直角)的對邊與斜邊的比叫做∠α的正弦,記作sinα,即sinα=∠α的對邊/∠α的斜邊 。
(2)餘弦(餘弦函數),三角函數的一種。在Rt△ABC(直角三角形)中,∠C=90°,∠A的餘弦是它的鄰邊比三角形的斜邊,即cosA=b/c,也可寫為cosa=AC/AB。
(3)正切函數是直角三辯缺角形中,對邊與鄰邊的比值叫做正切。此比值是直角三角形中該角的對邊長含灶手度與鄰邊長度之比,也可寫作tg。
擴展資談嫌料:
兩角和公式:
1、sin(A+B)=sinAcosB+cosAsinB
2、sin(A-B)=sinAcosB-sinBcosA
3、cos(A+B)=cosAcosB-sinAsinB
4、cos(A-B)=cosAcosB+sinAsinB
5、tan(A+B)=(tanA+tanB)/(1-tanAtanB)
6、tan(A-B)=(tanA-tanB)/(1+tanAtanB)
⑤ tan的計算公式
tan(40°)=0.83909963117728。
例如直角三角形之底為x,高為y,斜邊為z,底與斜邊之間的夾角為a。按定義:tan a = y / x,直角三角形高除以直角三角形底邊局核。sina = y / z,直角三角形高除以直桐姿掘角三角形斜邊。cos a= x / z,直角三角形底邊冊鋒除以直角三角形斜邊。
tan的計算:
tan計算公式是tana=y/x,直角三角形之底為x,高為y,斜邊為z,底與斜邊之間的夾角為a。tan一般指正切,在Rt△ABC中,∠C=90°,AB是∠C的對邊c,BC是∠A的對邊a,AC是∠B的對邊b,正切函數就是tanB=b/a,即tanB=AC/BC。
任意角終邊上除頂點外的任一點的橫坐標除以該點的非零縱坐標,角的頂點與平面直角坐標系的原點重合,而該角的始邊則與正x軸重合。簡單點理解:直角三角形任意一銳角的鄰邊和對邊的比,叫做該銳角的餘切。
⑥ tan17°的值是多少 要數字
17°=(17/360)*2π=(1/9-1/60)π;
對於 2π/n的正餘弦都神銷是可以櫻瞎兄表達出來的,這個肯定也可以用有限個元表達出來准確值的。
下面方法。具體就不寫了,脊襲太麻煩
⑦ 1➖tan17度➕cos146度
應用:tang(x+y)=(tanx+tany)/(1-tanxtany)
於是tan120=tan(71+49)=(tan71+tan49)/(1-tan71tan49)
即 -√3=(tan71+tan49)/(1-tan71tan49)
移項得 -√3(1-tan71tan49)=(tan71+tan49)
即 tan71+tan49-√明兆3tan71·tan49 =-√3
首先 (1-tan17)/(1+tan17) =(tan45-tan17)/(1+tan45tan17)
利用上題公式有:(1-tan17)/(1+tan17) =(tan45-tan17)/(1+tan45tan17)
=tan28
又有:cos146=-sin56,sin34=cos56
且激兄租 tan(x/2)=(1-cosx)/sinx=sinx/(1+cosx)
於是 cos146/(1+sin34)=-sin56/塵或(1+cos56)=-tan28
原式化為 tan28-tan28=0
⑧ 17度的正切值是什麼
tan17°
⑨ (1+tan17°)(1+tan28°)怎麼計算,麻煩寫出過程。。
圖寬畝並慎跡耐空