❶ 簡便運算的技巧和方法四年級奧數
四年級「簡便計算」掌握的好壞直接影響五六年級數學成績,各種運算定律要牢牢記住,並多加練習。在本單元學習過程中你能碰到的題型,基本都在這里了,請關注李老師,收藏本文,碰到困難題型再來看一看。
文末有「完整電子版」獲取方式!
首先給同學們奉上加、減、乘、除「運算定律」,務必熟記,最好是能全部准確默寫。
加、減、乘、除運算定律
例1:「多加就減,多減就加,少加再加,少減再減」。
例2:帶符號搬家
注意:此方法只能用於只有加減法或只有乘除法時,「帶符號」帶的是數字前面的符號。
例3:減法的性質、帶符號搬家綜合運用
減法的性質:一個數連續減去幾個數,等於這個數減去這幾個減數的和,用字母表示為:a-b-c=a-(b+c)
例4:除法的性質
除法的性質:一個數連續除以幾個數,等於這個數除以這幾個除數的積,用字母表示為:a÷b÷c=a÷(b×c)
例5:去括弧和加括弧
注意:在需要去括弧和加括弧時,如果括弧前面是「+」或「×」,不用變號;如果括弧前面是「-」或「÷」,要變號,「+」變「-」,「-」變「+」,「×」變「÷」,「÷」變「×」。
❷ 小學奧數題目,怎樣用簡便方法計算
首先看一類比較普通的題目,就拿我在小紙條上講的題目來舉個例子:
這是新的簡便方法:最終的余數是2,是不是我們的計算出現問題了呢圓哪?或者說我們的新方法不對?其實都不是,怎樣來理解呢,首先,除數被除數都縮小相同的倍數,商是不變的,也就岩孝是說,豎式裡面,商得出來是幾,我們直接抄上就可以,但是余數則不同,上面我講過,被除數中的0雖然劃掉了,可是數位還在,我們的余數2,在十位上,代表2個10,所以是20。總結為一句話:
用簡便方法做筆算,商是幾,直接抄在橫式後面,但是余數必須要留個心眼,看看它在哪個數位上,像這個題目,2在十位上,就代表20,所以餘20。
❸ 奧數的簡便計算
樓上的答案非常好,我來給順帶的解釋一下。
1.先將因子44提出來,用乘法分配率的逆運算。第二步把44分解成11×4。第三步用乘法結合律,4先乘125得出500,之後500再乘11。
2.先將999×111中的999分解成333×3,把原式轉化為333×333。第二步用乘法分配律的逆運算,333×(333+667)
這兩道題都是在考察乘法上的湊整思想,主要用到一些乘法定律:
乘法交換律: ab=ba
乘法結合律: abc=a(bc)
乘法分配律:a(b+c)=ab+ac
一看到含有3的因子的數就要注意是否能把原式轉換,看到整式有同樣的因子一定要提出來。
❹ 奧數中的巧算速算方法
運用加法運算定律巧算加法
1.直接利用補數巧算加法
如果兩個數的和正好可以湊成整十、整百、整千,那麼我們就可以說這兩個數互為補數,其中的一個加數叫做另一個加數的補數。
如:28+52=80,49+51=100,936+64=1000。
其中,28和52互為補數;49和51互為補數;936和64互為補數。
在加法計算中,如果能觀察出兩個加數互為補數,那麼根據加法交換律、結合律,可以把這兩個數先相加,湊成整十、整百、整千,……再與其它加數相加,這樣計算起來比較簡便。
例1
巧算下面各題:
(1)42+39+58;
(2)274+135+326+265。
解:(1)原式=(42+58)+39
=100+39=139
(2)原式=(274+326)+(135+265)
=600+400=1000
2.間接利用補數巧算加法
如果兩個加數沒有互補關系,可以間接利用補數進行加法巧算。
例2
計算986+238。
解法1:原式=1000-14+238
=1000+238-14
=1238-14=1224
解法2:原式=986+300-62
=1286-62=1224
以上兩種方法是把其中一個加數看作整十、整百、整千……,再去掉多加的部分(即補數),所以可稱為「湊整去補法」。
3.相接近的若干數求和
下面的加法算式是若干個大小相接近的數連加,這樣的加法算式也可以用巧妙的辦法進行計算。
❺ 高級奧數簡便計算
小學小數簡便計算高級難度
小數簡便計算的方法:(整數的運算定律在小數中同樣適用) ○
1乘法交換律與結合律、分配律的運用。 ○
2表面上看來,左右兩邊沒有相同的因數,不能使用乘法分配律。我們可以通過變一變,分一分的方法找出相同因數再運用乘法分配律進行計算。
下面各題怎樣算簡便就怎樣算。 乘法分配律的運用一
0.86×15.7-0.86×14.7 5.8×4.8+4.8×4.2 6.12×1.25-2.12×1.25
7.09×10.8-0.8×7.09 7.24×5.2+2.76×5.2 36.7×3.7-3.7×6.7
乘法分配律的運用二
3.65×4.7-36.5×0.37 8.8×0.25-0.48×2.5 48×0.56+44×0.48
10.7×16.1-151×1.07 3.4×10.9+34-0.34×19 12.7×9.9+1.27
乘法分配律的運用三
18.76×9.9+18.76 56.5×9.9+56.5 5.4×11-5.4
21×(9.3-3.7)-5.6 (7.7+1.54)÷0.7 10.4-9.6×0.35
乘法分配律的運用四
0.89×100.1 0.85×9.9 0.32×403
4.8×10.1 4.96×25 8.9×1.01
0.279×343+6.07×27.9+5×2.79 7.2×0.2+2.4×1.4
14.23×12.3-1.423×22-1423
❻ 小學奧數簡便計算的講解
一、乘法:
1.因數含有25和125的算式:悶困
例如①:25×42×4
我們牢記25×4=100,所以交換因數位置,使算式變為25×4×42.
同樣含有因數125的算式要先用125×8=1000。
例如②:25×32
此時我們要根據25×4=100將32拆成4×8,原式變成25×4×8。
例如③:72×125
我們根據125×8=1000將72拆成8×9,原式變成8×125×9。
重點例題:125×32×25
=(125×8)×(4×25)
2.因數含有5或15、35、45等的算式:
例如螞如念:35×16
我們根據需要將16拆分成2×8,這樣原式變為35×2×8。因為這樣就可以先得出整十的數,運算起來比較簡便。
3.乘法分配率的應用:
例如:56×32+56×68
我們注意加號兩邊的算式中都含有56,意思是32個56加上68個56的和是多少,於是可以提出56將算式變成56×(32+68)
如果是56×132—56×32
一樣提出56,算是變成56×(132-32)
注意:56×99+56
應想99個56加上1個56應為100個56,所以原式變為56×(99+1)
或者56×101-56
=56×(101-1)
另外注意綜合運用,例如:
36×58+36×41+36
=36×(58+41+1)
橡滾47×65+47×36-47
=47×(65+36-1)
4.乘法分配率的另外一種應用:
例如:102×47
我們先將102拆分成100+2
算式變成(100+2)×47
然後注意將括弧里的每一項都要與括弧外的.47相乘,算式變為:
100×47+2×47
例如:99×69
我們將99變成100-1
算式變成(100-1)×69
然後將括弧里的數分別乘上69,注意中間為減號,算式變成:
100×69-1×69
二、除法:
1.連續除以兩個數等於除以這兩個數的乘積:
例如:32000÷125÷8
我們可以將算式變為32000÷(125×8)=32000÷1000
2.例如:630÷18
我們可以將18拆分成9×2
這時原式變為630÷(9×2)
注意要加括弧,然後打開括弧,原式變成630÷9÷2=70÷2
三、乘除綜合:
例如6300÷(63×5)
我們需要打開括弧,此時要將括弧里的乘號變為除號,原式變為
6300÷63÷5
❼ 奧數小數的簡便運算
常用的簡便演算法有以下幾種
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便辯正。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將碰灶賀括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
奧數小數的簡便運算的話,其實跟整數的簡便運算其實是差不多的,也可以參照上面的幾個技巧進行計算。笑派