『壹』 初中數學常用的幾種經典解題方法
初中數學里常用的幾種經典解題方法
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10.客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法
『貳』 做數學題有何技巧方法
數學應用問題較好地考察了學生閱讀理解能力與日常生活體驗,同時又考察了學生獲取信息後的抽象概括與建模能力,判斷決策能力。那麼接下來給大家分享一些關於做數學題有何技巧 方法 ,希望對大家有所幫助。
做數學題有何技巧方法
1. 觀察與實驗
( 1 )觀察法:有目的有計劃的通過視覺直觀的發現數學對象的規律、性質和解決問題的途徑。
( 2 )實驗法:實驗法是有目的的、模擬的創設一些有利於觀察的數學對象,通過觀察研究將復雜的問題直觀化、簡單化。它具有直觀性強,特徵清晰,同時可以試探解法、檢驗結論的重要優勢。
2. 比較與分類
( 1 )比較法
是確定事物共同點和不同點的思維方法。在數學上兩類數學對象必須有一定的關系才好比較。我們常比較兩類數學對象的相同點、相異點或者是同異綜合比較。
( 2 )分類的方法
分類是在比較的基礎上,依據數學對象的性質的異同,把相同性質的對象歸入一類,不同性質的對象歸為不同類的思維方法。如上圖中一次函數的 k 在不等於零的情況下的分類是大於零和小於零體現了不重不漏的原則。
3 .特殊與一般
( 1 )特殊化的方法
特殊化的方法是從給定的區域內縮小范圍,甚至縮小到一個特殊的值、特殊的點、特殊的圖形等情況,再去考慮問題的解答和合理性。
( 2 )一般化的方法
4. 聯想與猜想
( 1 )類比聯想
類比就是根據兩個對象或兩類事物間存在著的相同或不同屬性,聯想到另一事物也可能具有某種屬性的思維方法。
通過類比聯想可以發現新的知識;通過類比聯想可以尋求到數學解題的方法和途徑:
( 2 )歸納猜想
牛頓說過:沒有大膽的猜想就沒有偉大的發明。猜想可以發現真理,發現論斷;猜想可以預見證明的方法和思路。初中數學主要是對命題的條件觀察得出對結論的猜想,或對條件和結論的觀察提出解決問題的方案與方法的猜想。
歸納是對同類事物中的所蘊含的同類性或相似性而得出的一般性結論的思維過程。歸納有完全歸納和不完全歸納。完全歸納得出的猜想是正確的,不完全歸納得出的猜想有可能正確也有可能錯誤,因此作為結論是需要證明的。關鍵是猜之有理、猜之有據。
5. 換元與配方
( 1 )換元法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。
我們使用換元法時,要遵循有利於運算、有利於標准化的原則,換元後要注重新變數范圍的選取,一定要使新變數范圍對應於原變數的取值范圍,不能縮小也不能擴大。 你可以先觀察算式,你可以發現這種要換元法的算式中總是有相同的式子,然後把他們用一個字母代替,算出答案,然後答案中如果有這個字母,就把式子帶進去,計算就出來啦。
( 2 )配方法
配方法是對數學式子進行一種定向變形(配成「完全平方」)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用「裂項」與「添項」、「配」與「湊」的技巧,從而完成配方。有時也將其稱為「湊配法」。最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解。配方法使用的最基本的配方依據是二項完全平方公式 (a + b) 2 = a 2 + 2ab + b 2 ,將這個公式靈活運用,可得到各種基本配方形式
6. 構造法與待定系數法
( 1 )構造法所謂構造性的方法就是數學中的概念和方法按固定的方式經有限個步驟能夠定義的概念和能夠實現的方法。常見的有構造函數,構造圖形,構造恆等式。平面幾何裡面的添輔助線法就是常見的構造法。構造法解題有:直接構造、變更條件構造和變更結論構造等途徑。
( 2 )待定系數法:將一個多項式表示成另一種含有待定系數的新的形式,這樣就得到一個恆等式。然後根據恆等式的性質得出系數應滿足的方程或方程組,其後通過解方程或方程組便可求出待定的系數,或找出某些系數所滿足的關系式,這種解決問題的方法叫做待定系數法。
7. 公式法與反證法
( 1 )公式法
利用公式解決問題的方法。初中最常用的有一元二次方程求根時使用求根公式的方法;完全平方公式的方法等。如下面一組題就是完全平方公式的應用:
( 2 )反證法是「間接證明法」一類,即:肯定題設而否定結論,從而得出矛盾,就可以肯定命題的結論的正確性,從而使命題獲得了證明。
中學數學新題型解題方法和技巧
1. 數學探索題
所謂探索題就是從問題給定的題設條件中探究其相應的結論並加以證明,或從給定的題目要求中探究相應的必需具備的條件、解決問題的途徑。
條件探索題:解答策略之一是將題設和結論視為已知,同時推理,在演繹的過程中尋找出相應所需的條件。
結論探索題:通常指結論不確定不唯一,或結論需通過類比、引申、推廣,或給出特例需通過歸納得出一般結論。可以先猜測再去證明;也可以尋求具體情況下的結論再證明;或直接演繹推證。
規律探索題:實際就是探索多種解決問題的途徑,制定多種解題的策略。
活動型探索題:讓學生參與一定的 社會實踐 ,在課內和課外的活動中,通過探究完成問題解決。
推廣型探索題:將一個簡單的問題,加以推廣,可產生新的結論,在初中教學中常見。如平行四邊形的判定,就可以產生許多新的推廣,一方面是自身的推廣,一方面可以延伸到菱形和正方形中。
探索是數學的生命線,解探索題是一種富有創造性的思維活動,一種數學形式的探索絕不是單一的 思維方式 的結果,而是多種思維方式的聯系和滲透,這樣可使學生在學習數學的過程中敢於質疑、提問、 反思 、推廣。通過探索去經歷數學發現、數學探究、數學創造的過程,體會創造帶來的快樂。
2. 數學情境題
情境題是以一段生活實際、 故事 、歷史、游戲與數學問題、數學思想和方法於情境中。這類問題往往生動有趣,激發學生強烈的研究動機,但同時數學情景題又有信息量大,開放性強的特點,因此需要學生能從場景中提煉出數學問題,同時經歷了藉助數學知識研究實際問題的數學化過程。
如老師在講有理數的混合運算時,
3. 數學開放題
數學開放題是相對於傳統的封閉題而言的一種新題型,其特徵是題目的條件不充分,或沒有確定的結論,也正因為這樣,所以開放題的解題策略往往也是多種多樣的。
( 1 )數學開放題一般具有下列特徵
①不確定性:所提的問題常常是不確定的和一般性的,其背景情況也是用一般詞語來描述的,因此需收集其他必要的信息,才能著手解的題目。
②探究性:沒有現成的解題模式,有些答案可能易於直覺地被發現,但是求解過程中往往需要從多個角度進行思考和探索。
③非完備性:有些問題的答案是不確定的,存在著多樣的解答,但重要的還不是答案本身的多樣性,而在於尋求解答的過程中學生的認知結構的重建。
④發散性:在求解過程中往往可以引出新的問題,或將問題加以推廣,找出更一般、更概括性的結論。常常通過實際問題提出,學生必須用數學語言將其數學化,也就是建立數學模型。
⑤發展性:能激起多數學生的好奇性,全體學生都可以參與解答過程。
⑥創新性:教師難以用注入式進行教學,學生能自然地主動參與,教師在解題過程中的地位是示範者、啟發者、鼓勵者、合作者。
( 2 )對數學開放題的分類
從構成數學題系統的四要素(條件、依據、方法、結論)出發,定性地可分成四類;如果尋求的答案是數學題的條件,則稱為條件開放題;如果尋求的答案是依據或方法,則稱為策略開放題;如果尋求的答案是結論,則稱為結論開放題;如果數學題的條件、解題策略或結論都要求解題者在給定的情境中自行設定與尋找,則稱為綜合開放題。
從學生的學習生活和熟悉的事物中收集材料,設計成各種形式的數學開放性問題,意在開放學生的思路,開放學生潛在的學習能力,開放性數學問題給不同層次的學生學好數學創設了機會,多種解題策略的應用,有力地發展了學生的 創新思維 ,培養了學生的創新技能,提高了學生的創新能力。
( 3 )以數學開放題為載體的教學特徵
①師生關系開放:教師與學生成為問題解決的共同合作者和研究者
②教學內容開放:開放題往往條件不完全、或結論不完全,需要收集信息加以分析和研究,給數學留下了創新的空間。
③教學過程的開放性:由於研究的內容的開放性可以激起學生的好奇心、同時由於問題的開放性,就沒有現成的解題模式,因此就會留下想像的空間,使所有的學生都可參與想像和解答。
( 4 )開放題的 教育 價值
有利於培養學生良好的思維品質;
有助於學生主體意識的形成;
有利於全體學生的參與,實現教學的民主性和合作性;
有利於學生體驗成功、樹立信心,增強學習的興趣;
有助於提高學生解決問題的能力。
4. 數學建模題(初中數學建模題也可以看作是數學應用題)
數學新課程標准指出 : 要學生會應用所學知識解決實際問題 , 能適應社會日常生活和生產勞動的基本需要。初中數學的學習目的之一 , 就是培養學生解決實際問題的能力 , 要求學生會分析和解決生產、生活中的數學問題 , 形成善於應用數學的意識和能力。從各省市的中考數學命題來看 , 也更關注學生靈活運用數學知識解決實際問題能力的考查 , 可以說培養學生解答應用題的能力是使學生能夠運用所學數學知識解決實際問題的基本途徑之一
數學思想方法在解題中有不可忽視的作用
1. 函數與方程的思想
函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。
2. 數形結合的思想
數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以藉助幾何特徵去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特徵用代數的方法去解決。因此數形結合的思想對問題的解決有舉足輕重的作用。
3. 分類討論的思想
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關鍵是化整為零,在局部討論降低難度。常見的類型:類型 1 :由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論;類型 2 :由數學運算引起的討論,如不等式兩邊同乘一個正數還是負數的問題;類型 3 :由性質、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應用引起的討論;類型 4 :由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關問題引起的討論。類型 5 :由某些字母系數對方程的影響造成的分類討論,如二次函數中字母系數對圖象的影響,二次項系數對圖象開口方向的影響,一次項系數對頂點坐標的影響,常數項對截距的影響等。
分類討論思想是對數學對象進行分類尋求解答的一種思想方法,其作用在於克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。分類的步驟:①確定討論的對象及其范圍;②確定分類討論的分類標准;③按所分類別進行討論;④歸納小結、綜合得出結論。注意動態問題一定要先畫動態圖。
4 .轉化與化歸的思想
轉化與化歸市中學數學最基本的數學思想之一,數形結合的思想體現了數與形的轉化;函數與方程的思想體現了函數、方程、不等式之間的相互轉化;分類討論思想體現了局部與整體的相互轉化,所以以上三種思想也是轉化與化歸思想的具體呈現。
但是轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。
但是轉化包括等價轉化和非等價轉化,等價轉化要求在轉化的過程中前因和後果是充分的也是必要的;不等價轉化就只有一種情況,因此結論要注意檢驗、調整和補充。轉化的原則是將不熟悉和難解的問題轉為熟知的、易解的和已經解決的問題,將抽象的問題轉為具體的和直觀的問題;將復雜的轉為簡單的問題;將一般的轉為特殊的問題;將實際的問題轉為數學的問題等等使問題易於解決。
常見的轉化方法有
( 1 )直接轉化法:把原問題直接轉化為基本定理、基本公式或基本圖形問題
( 2 )換元法:運用「換元」把式子轉化為有理式或使整式降冪等,把較復雜的函數、方程、不等式問題轉化為易於解決的基本問題 . ?
( 3 )數形結合法:研究原問題中數量關系(解析式)與空間形式(圖形)關系,通過互相變換獲得轉化途徑 . ?
( 4 )等價轉化法:把原問題轉化為一個易於解決的等價命題,達到化歸的目的 . ?
( 5 )特殊化方法:把原問題的形式向特殊化形式轉化,並證明特殊化後的問題,使結論適合原問題 .
( 6 )構造法:「構造」一個合適的數學模型,把問題變為易於解決的問題 .
( 7 )坐標法:以坐標系為工具,用計算方法解決幾何問題也是轉化方法的一個重要途徑
轉化與化歸的指導思想?
( 1 )把什麼問題進行轉化,即化歸對象 . ?
( 2 )化歸到何處去,即化歸目標 . ?
( 3 )如何進行化歸,即化歸方法 . ?
化歸與轉化思想是一切數學思想方法的核心 .
做數學題有何技巧方法相關 文章 :
★ 做數學選擇題的十種技巧
★ 做六年級數學題的學習方法和做題方法
★ 做數學題的解題技巧方法高考
★ 做小學數學作業各類題型的方法
★ 學好數學的方法和技巧有哪些
★ 學好數學方法和技巧是什麼
★ 做數學蒙題的技巧
★ 做數學選擇題的技巧
★ 數學選擇題八大解題方法
『叄』 高中數學解數列問題有哪些常用方法
數列問題解題方法技巧
1.判斷和證明數列是等差(等比)數列常有三種方法:
(1)定義法:對於n≥2的任意自然數,驗證 為同一常數。
(2)通項公式法:
①若 = +(n-1)d= +(n-k)d ,則 為等差數列;
②若 ,則 為等比數列。
(3)中項公式法:驗證中項公式成立。
2. 在等差數列 中,有關 的最值問題——常用鄰項變號法求解:
(1)當 >0,d<0時,滿足 的項數m使得 取最大值.
(2)當 <0,d>0時,滿足 的項數m使得取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
3.數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。
三、數列問題解題注意事項
1.證明數列 是等差或等比數列常用定義,即通過證明 或 而得。
2.在解決等差數列或等比數列的相關問題時,「基本量法」是常用的方法,但有時靈活地運用性質,可使運算簡便,而一般數列的問題常轉化為等差、等比數列求解。
3.注意 與 之間關系的轉化。如:
= , = .
4.數列極限的綜合題形式多樣,解題思路靈活,但萬變不離其宗,就是離不開數列極限的概念和性質,離不開數學思想方法,只要能把握這兩方面,就會迅速打通解題思路.
5.解綜合題的成敗在於審清題目,弄懂來龍去脈,透過給定信息的表象,抓住問題的本質,揭示問題的內在聯系和隱含條件,明確解題方向,形成解題策略.原文鏈接: http://www.90house.cn/shuxue/shi/288.html