❶ 這是一道五年級的數學題目,15 1/6-7 1/5-2.8=請教!多謝
31/6
=(15-7-2)+1/6-(1/5+4/5)
=6-1+1/6
=31/6
分數計算方法:
分數的乘法法則:分數乘分數,用分子相乘做積的分子,分母相乘做積的分母,能約分的先約分。
通分的步驟:
1、先求出原來幾個分數(式)的分母的最簡公分母;
2、根據分數(式)的基本性質,把原來分數(式)化成以最簡公分母為分母的分數(式)。
約分的步驟:
1、將分子分母分解因數。
2、找出分子分母公因數。
3、消去非零公因數。
約分時,如果能很快看出分子和分母的最大公因數,直接用它們的最大公約數去除比較簡便。
❷ 五年級下冊數學內容是什麼
五年級下冊數學內容是:
一、第一部分:《分數乘法》
1、分數乘整數的意義:分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2、分數乘整數的計算方法:分母不變,分子和整數相乘的積作分子。能約分的要約成最簡分數。
3、計算時,可以先約分再計算。
4、理解打折的含義。例如:九折,是指現價是原價的十分之九;九五折,是指現價是原價的百分之九十五。
5、分數乘分數的計算方法:分子相乘做分子,分母相乘做分母,能約分的可以先約分。計算結果要求是最簡分數。
二、第二部分:《分數除法》
1、倒數。如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數。倒數是對兩個數來說的,並不是孤立存在的。
2、1的倒數仍是1;0沒有倒數。0沒有倒數,是因為在分數中,0不能做分母。
3、一個數除以分數的意義與整數除法的意義相同;一個數除以分數等於乘這個數的倒數。
三、第三部分 《長方體》
1、由6個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫做長方體。兩個面相交的邊叫做棱。三條棱相交的點叫做頂點。相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。在一個長方體中,相對的面完全相同,相對的棱長度相等。
2、由6個完全相同的正方形圍成的立體圖形叫做正方體(也叫做立方體)。正方體有12條棱,它們的長度都相等,所有的面都完全相同。
3、長方體和正方體的面、棱和頂點的數目都一樣,只是正方體的棱長都相等,正方體可以說是長、寬、高都相等的長方體,它是一種特殊的長方體。
四、第四部分:《分數的混合運算》
分數混合運算的運算順序與整數混合運算的運算順序相同。先乘除後加減,有括弧的先算括弧裡面的。最後結果是最簡分數。
五、第五部分:《百分數》
1、百分數的意義。百分數表示一個數另一個數的百分之幾。百分數也叫百分比、百分率。
2、小數化成百分數的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把分數化成百分數:可以先把分數化成小數(除不盡時,通常保留三位小數),再寫成百分數;也可以把分子分母同時乘一個數將其化成一百分之幾的數,再寫成百分數。
六、第六部分《統計》
1、將一組數據從小到大(或從大到小)排列,中間的數稱為這組數據的中位數。
2、一組數據中出現次數最多的數稱為這組數據的眾數。
3、中位數的求法:將一組數據按大小的順序排列,如果是奇數個數據,中間的數就為這組數據的中位數,如果是偶數個數據,中間兩個數的平均數為這組數據的中位數。
4、眾數:在一組數據中,出現次數最多的數,是這組數據的眾數。在一組數據中,眾數可能不止一個,也可能沒有眾數。
❸ 五年級怎麼畫數學第3單元的手抄報
五年級所有單元手抄報 一單元:《分數乘法》
分數乘法(一)
知識點:1、理解分數乘整數的意義.分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算.
2、分數乘整數的計算方法.分母不變,分子和整數相乘的積作分子.能約分的要約成最簡分數.
3、計算時,可以先約分在計算.
分數乘法(二)
知識點:1、結合具體情境,進一步探索並理解分數乘整數的意義,並能正確進行計算.
2、能夠求一個數的幾分之幾是多少.
3、理解打折的含義.例如:九折,是指現價是原價的十分之九.
分數乘法(三)
知識點:1、分數乘分數的計算方法,並能正確進行計算.
分子相乘做分子,分母相乘做分母,能約分的可以先約分.計算結果要求是最簡分數.
2、比較分數相乘的積與每一個乘數的大小.
真分數相乘積小於任何一個乘數;真分數與假分數相乘積大於真分數小於假分數.
二單元:《長方體(一)》
長方體的認識
知識點:1、認識長方體、正方體,了解各部分的名稱.
2、長方體、正方體各自的特點.
頂 點 面 棱
個 數 個 數 形 狀 大小關系 條數 長度關系
8 6 都是長方形,特殊的有兩個相對的面是正方形,其餘四個面是完全一樣的長方形. 相對的面是完全一樣的長方形. 12 可以分為三組,相對的棱平行且相等.
8 6 都是正方形. 每個面都是正方形. 12 長度都相等.
3、知道正方體是特殊的長方體.
4、能計算長方體、正方體的棱長總和.
長方體的棱長總和=(長+寬+高)*4或者是長*4+寬*4+高*4
正方體的棱長總和=棱長*12
靈活運用公式,能求出長方體的長、寬、高或是正方體的棱長.
展開與折疊
知識點:1、認識並了解長方體和正方體的平面展開圖.
2、了解正方體平面展開圖的幾種形式,並以此來判斷.
長方體的表面積
知識點:1、理解表面積的意義.是指六個面的面積之和.
2、長方體和正方體表面積的計算方法.
3、能結合生活中的實際情況,計算圖形的表面積.
露在外面的面
知識點:1、在觀察中,通過不同的觀察策略進行觀察.
如:一種是看每個紙箱露在外面的面,再加到一起;另一種是分別從正面、上面、側面進行不同角度的觀察,看每個角度都能看到多少個面,再加到一起.
2、發現並找出堆放的正方體的個數與露在外面的面的面數的變化規律.
三單元:《分數除法》
倒數
知識點:1、發現倒數的特徵並理解倒數的意義.
如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數.倒數是對兩個數來說的,並不是孤立存在的.
❹ 數學五年級下冊考試注意要點什麼
第一單元 分數乘法
單元要點分析:
教學內容:
本單元是在學生學習了「分數的認識」和「分數加減法」,並理解、掌握整數乘法意義的基礎上,進一步學習分數乘法的。主要內容包括分數乘法的意義、計演算法則以及簡單應用。
三維目標:
1.知識與技能:
(1)使學生理解分數乘法的意義,掌握分數乘法的計演算法則,能夠正確、較熟練地進行計算。
(2)能根據分數乘法的意義,解決一些簡單的數學問題。
2.過程與方法
(1)經歷從數學的角度提出問題,理解問題,並運用分數乘法解決問題的過程。
(2)經歷觀察、猜想和證明等數學活動過程,能有條理地闡述自己的觀點。
3.情感、態度、價值觀
(1)通過觀察、猜想、實驗等數學活動,體驗數學問題的探索性和挑戰性。
(2)進一步體驗數學與日常生活密切相關。
教學重點:探索並理解分數乘法的意義與計演算法則。
教學難點:一個數乘分數的意義。
教學關鍵:理解「一個數乘分數」表示求這個數的幾分之幾。
課時劃分:
1.分數乘法(一)---------------------------------------2課時
2.分數乘法(二)---------------------------------------2課時
3.分數乘法(三)---------------------------------------2課時
4.練習一---------------------------------------------------2課時
5.單元復習------------------------------------------------1課時
教學設計;
1.分數乘法(一) 1
教學目標:
能力目標:能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
知識目標:學習整數乘以分數的計算方法,讓學生親自經歷探究整數乘以分數的計算原理,學生能夠熟練准確的計算整數乘以分數。
情感目標:使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:學生能夠熟練的計算整數乘以分數
教學方法:師生共同歸納和推理
教學准備:教學參考書、教科書
教學過程:
一、復習導入:
教師出示教學板書,請學生計算下列分數加減運算題。
教師:來回巡視學生的做題情況,並提問學生說說自己如何計算的?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(先通分,再進行分子與分子相加減;分母不變…)並注意更正學生的錯誤和表揚回答問題的同學。
二、講授新課
同學們我們學習一種新的運算:分數乘法,讓學生想一想什麼是分數乘法?
學生同桌之間討論,教師提問學生回答問題。
教師板書例題,讓學生想一想如何計算?
學生列出算式3× =,學生同桌之間相互討論,如何計算整數乘以分數?
教師提問學生說一說自己是怎樣計算的?
(學生1:3× = = ;學生2:3× = = = = ……)
教師和學生總結整數乘以分數的計算方法,整數乘以分數,只把整數乘以分子,分母不變。)
三、鞏固練習:
做課本2頁塗一塗,算一算,2個 的和是多少?
讓學生熟練計算,教師及時糾正學生錯誤的計算方法。
做課本試一試1.2題。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
分數乘法
3× = = 3× = = = =
分數乘以整數的計算方法:整數乘以分數,只把整數乘以分子,分母不變。)
分數乘法(一) 2
教學目標:
能力目標:
能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
知識目標:學習整數乘以分數的計算方法,讓學生親自經歷探究整數乘以分數的計算原理,學生能夠熟練准確的計算整數乘以分數。
情感目標:使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:學生能夠熟練的計算整數乘以分數
教學方法:師生共同歸納和推理
教學准備:教學參考書、教科書
教學過程:
一、 復習導入:
教師出示教學板書,請學生計算下列分數加減運算題。
4×
教師:來回巡視學生的做題情況,並提問學生說說自己如何計算的?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(先通分,再進行分子與分子相加減;分母不變。)並注意更正學生的錯誤和表揚回答問題的同學。
二、講授新課
同學們我們學習一種新的運算:分數乘法,讓學生想一想什麼是分數乘法?
學生同桌之間討論,教師提問學生回答問題。
教師板書例題,讓學生想一想如何計算?
學生列出算式3× =,學生同桌之間相互討論,如何計算整數乘以分數?
教師提問學生說一說自己是怎樣計算的?
(學生1:3× = = ;學生2:3× = = = = ……)
教師和學生總結整數乘以分數的計算方法,整數乘以分數,只把整數乘以分子,分母不變。)
三、鞏固練習:
做課本2頁塗一塗,算一算,2個 的和是多少?
讓學生熟練計算,教師及時糾正學生錯誤的計算方法。
做課本試一試1.2題。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
分數乘法
3× = = 3× = = = =
分數乘以整數的計算方法:整數乘以分數,只把整數乘以分子,分母不變。)
2.分數乘法(二) 3
教學目標:
能力目標:
能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
知識目標:繼續學習整數乘以分數的計算方法,讓學生能夠計算整數的幾分之幾是多少,學生能夠熟練准確的計算出一個整數乘以不同分數的結果。
情感目標:使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:
學生能夠熟練的計算出整數乘以不同分數的結果。
教學方法:師生共同歸納和推理
教學准備:教學參考書、教科書
教學過程:
二、 復習導入:
教師出示教學板書,請學生計算下列分數乘法運算題。
= = 21× =
教師:來回巡視學生的做題情況,並提問學生說說自己如何計算的?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(整數乘以分數,整數乘以分子,分母不變。注意兩種約分方式。)
二、講授新課
教師出示課本例題:小紅有6個蘋果,淘氣的蘋果是小紅的 ;笑笑的蘋果是小紅的 ,淘氣和笑笑各有幾個蘋果?
教師讓學生思考這個例題,並對學生進行提問。
學生自己動手填完課本例題上的方格。
教師提問學生說一說自己是怎樣計算的?
(學生1:6× = ;學生2:6× = ……)
教師和學生對比這兩個題目的區別和聯系。學生初步理解整數乘以分數的數學意義。
三、鞏固練習:
做課本5頁試一試,36的 和 分別是多少?
注意讓學生體驗求一個整數的幾分之幾是多少的數學意義。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
分數乘法(二)
6× = 6× =
整數乘以分數的數學意義:就是求整數的幾分之幾是多少?
分數乘法(二) 4
教學目標:
知識目標:繼續學習整數乘以分數的計算方法,讓學生能夠計算整數的幾分之幾是多少,學生能夠熟練准確的計算出一個整數乘以不同分數的結果。
能力目標:
能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
情感目標:
使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:
學生能夠熟練的計算出整數乘以不同分數的結果。
教學方法:師生共同歸納和推理。
教學准備:教學參考書、教科書
教學過程:
一、復習導入:
教師出示教學板書,請學生計算下列分數加減運算題。
4× 12× =
教師:來回巡視學生的做題情況,並提問學生說說每一道算式的意義。
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題,並注意更正學生的錯誤和表揚回答問題的同學。
二、課堂練習
學生做第1題,教師注意讓學生對比好門和小明的高度,並注意進行長度單位的換算。
學生做第2題,教師注意提醒學生及時約分化成最簡分數。並同桌之間相互說說每個算式的數學意義。
學生做第3題,教師巡視學生做題情況,並及時對有困難得學生進行幫助。
學生做第4題,教師注意讓學生能夠區分最少和最多這個數字范圍,並提問學生說說自己的答案。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
分數乘法(二)
480× 180(千克) 180× =150(千克)
3. 分數乘法(三) 5
教學目標:
能力目標:
能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
知識目標:學習分數乘以分數的計算方法,學生能夠熟練准確的計算出一個分數乘以另一個分數的結果。
情感目標:使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:
學生能夠熟練的計算出分數乘以分數的結果。
教學方法:師生共同歸納和推理
教學准備:教學參考書、教科書
教學過程:
一、復習導入:
教師出示教學板書,請學生計算下列分數乘法運算題。
= = 21× =
教師:來回巡視學生的做題情況,並提問學生說說自己如何計算的?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(整數乘以分數,整數乘以分子,分母不變。注意兩種約分方式。)
二、講授新課
教師出示課本例題:一張長方形的紙條,第一次剪去它的 ,第二次剪去剩餘部分的 。此時,剩下的部分佔這張紙條的幾分之幾?如果第三次再剪去剩餘部分的 ,那麼剩下的部分佔這張紙條的幾分之幾?
教師讓學生思考這個例題,並對學生進行提問。
?分析第一次剪去它的 ,第二次再剪去剩下的 ,那就是 。也就是
教師讓學生從圖中看出是 ,讓學生從 = 中思考,分數乘以分數的運算規則,讓學生同桌之間相互討論。
教師提問學生說說分數乘以分數的運演算法則。並對學生的說法給以鼓勵。
教師和全班學生共同總結出分數乘以分數的運演算法則:分數乘以分數,分子乘以分子作為分子,分母乘以分母作為分母。
驗證法則:讓學生折紙驗證 ?,並讓學生分析為什麼?
課堂討論:讓學生能夠根據課本7頁中的插圖,說一說,紅色部分佔斜線部分的幾分之幾?占整張紙的幾分之幾?讓學生進一步理解整體和部分的關系;初步理解求分數的幾分之幾是多少?
三、鞏固練習:
做課本8頁試一試,
讓學生運用分數乘以分數的法則來進行計算。注意能約分的先約分,如: 中的7和14先約分。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
分數乘法(三)
= = =
分數乘以分數的運演算法則:分子相乘,分母相乘,能約分的要約分。
分數乘法(三) 6
教學目標:
能力目標:
能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
知識目標:學習分數乘以分數的計算方法,學生能夠熟練准確的計算出一個分數乘以另一個分數的結果。
情感目標:使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:
學生能夠熟練的計算出分數乘以分數的結果。
教學方法:師生共同歸納和推理
教學准備:教學參考書、教科書
教學過程:
一、復習導入:
教師出示教學板書,請學生計算下列分數乘法運算題。
× =
教師:來回巡視學生的做題情況,並提問學生說說自己如何計算的?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(分數乘以分數,分子相乘,分母相乘,能約分的要約分。)
二、課堂練習:
學生做第一題折一折,塗一塗。讓學生用折紙的方式再次驗證分數乘以分數的運演算法則,注意讓學生體會分數的幾分之幾是多少?
學生做第2題,注意讓學生體驗分數相乘的積於每一個乘數的關系。
學生做第3題,讓學生理解分數的幾分之幾與占整體「1」之間的關系。
學生做第4題,讓學生能夠學會比較 的 和 占整體「1」的大小。
學生做第5題,教師注意讓學生整體的幾分之幾是多少?
學生做第6題,讓學生注意區分不同標準的幾分之幾是多少;占整體的幾分之幾。
學生做第7題,教師注意讓學生利用分數乘法學會解決生活中實際問題。
第8題,學生根據學過的分數乘法知識,分辨一下唐僧分西瓜是否公平。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
分數乘法(三)
=
是整個操場「1」的 , 是整個操場「1」的 。
分數乘以分數的運演算法則:分子相乘,分母相乘,能約分的要約分。
4.練習一 7
教學目標:
能力目標:
能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
知識目標:
復習分數乘以整數和分數乘以分數的計算方法,學生能夠熟練准確的計算出一個分數乘以整數和一個分數乘以另一個分數的結果。
情感目標:
使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:
學生能夠熟練的計算出分數乘以分數和分數乘以整數的結果。
教學方法:師生共同歸納和推理。
教學准備:教學參考書、教科書。
教學過程:
一、復習導入:
教師出示教學板書,請學生計算下列分數乘法運算題。
5× × =
教師:來回巡視學生的做題情況,並提問學生說說自己如何計算的?這些分數乘法運算有什麼不同?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(分數乘以分數,分子相乘,分母相乘,能約分的要約分。分數乘以整數,整數乘以分子,分母不變。)
二、課堂練習:
學生做第一題,讓學生用學過的分數乘以整數的知識求1000克牛肉中的蛋白質和脂肪的含量各是多少?
學生做第2題,注意讓學生用分數乘以整數的知識求出全年我市空氣質量為優的天氣是多少天?培養學生從小保護環境的環保意識。
學生做第3題,讓學生計算整數乘以分數和分數相乘的算式。
學生做第4題,讓學生能夠學會比較整體「1」的幾分之幾是多少?
學生做第5題,教師注意讓學生求整體的幾分之幾是多少?
學生做第6題,讓學生用整數乘以分數的知識來解決生活中有關分數的生活問題,培養學生「一方有難,多方支援」的人道主義思想。
學生做第7題,教師注意讓學生利用分數乘法學會解決生活中實際問題。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
練習一
1000× 200(克) 1000× 100(克)
整數乘以分數的運演算法則:整數乘以分子,分母不變,能約分得要約分。
練習一 8
教學目標:
能力目標:
能根據解決問題的需要,探究有關的數學信息,發展初步的分數乘法的能力。
知識目標:復習分數乘以整數和分數乘以分數的計算方法,學生能夠熟練准確的計算出一個分數乘以整數和一個分數乘以另一個分數的結果。
情感目標:使學生感受到分數乘法與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:
學生能夠熟練的計算出分數乘以分數和分數乘以整數的結果。
教學方法:師生共同歸納和推理
教學准備:教學參考書、教科書
教學過程:
一、復習導入:
教師出示教學板書,請學生計算下列分數乘法運算題。
12×
教師:來回巡視學生的做題情況,並提問學生說說自己如何計算的?這些分數乘法運算有什麼不同?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(分數乘以分數,分子相乘,分母相乘,能約分的要約分。分數乘以整數,整數乘以分子,分母不變。)
二、課堂練習:
學生做第8題,讓學生明白商場打折的意思,分別求出一個整數的幾分之幾是多少?如: =?
學生做第9題,注意讓學生用分數乘以整數的知識求出梨、蘋果、香蕉各占水果總數的多少?
學生做第10題,讓學生計算一個分數的幾分之幾是多少?注意提醒學生及時約分。
學生做第11題,讓學生先計算出分數乘法算式的得數再學會比較分數的大小。
學生做第12題,教師注意讓學生觀察統計圖表,求出2004年比2003年增加多少元?
學生做第13題,讓學生用整數乘以分數的知識來解決生活中有關分數的生活問題,注意提醒學生認清長度單位。
學生做第14題,教師注意讓學生利用分數乘法學會解決生活中實際問題。
四、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
練習一
15× 10(米) 15-10=5(米)
5.單元復習 9
教學目標
1. 結合具體情境,在操作活動中,探索並理解分數乘法的意義;
2. 探索並掌握分數乘法的計算方法,並能正確計算;
3. 能解決簡單的分數乘法的實際問題,體會數學與生活的密切聯系。
教學重點、難點:能夠熟練的進行分數乘法的計算。
訓練要點:
一 填空。
1.看圖列式。
加法算式:
? 乘法算式:
「1」
2.在下面括弧里填上合適的數。
米 =( )厘米 分 =( )秒
噸 =( )千克 千克 =( )克
3.一台粉碎機1小時粉碎飼料 噸, 小時能粉碎( )噸飼料。
4.5個 米是5米的( )。
5.甲數是 ,乙數是甲數的 ,乙數是( )。
6. ×a,當a( )時,積小於 ,當a( ),積大於 。
8.在 里填上>、<或 =。
20× 20 × ×2 2
9.5米的 是( )米,比5米多 米是( )米。
二.判斷。
1.20× 與 ×20表示的意義和計算方法都相同。( )
2.一個數乘以真分數,積一定小於這個數。( )
3.3米的 與1米的 同樣長。 ( )
三 、 選擇。
1.6 ×5 = 6×5+ ×5 = 30 是應用了( )
A.乘法交換律 B.乘法結合律 C.乘法分配律
2. 乘以它的 ,是( )
A. B. C.
3.24個 比18的 多多少?算式是( )
A.24× -18×
B. ×24-18×
C. ×24- ×18
4.某商城節日商品75折優惠銷售。「75折」表示( )
A.現價是原價的75%
B.原價是現價的75% C.現價便宜了75%
四、 解決數學問題。
1. 邊長 分米的正方形的周長是( )分米。
2. 六(1)班有50人,女生佔全班人數的 ,女生有( )人,男生有( )。
3. 看一本書,每天看全書的 ,3天看了全書的( )。
4.一袋大米25kg,已經吃了它的,吃了( )kg,還剩( )kg。
5.比30多 的數是( );比36少 的數是( )。
第二單元:長方體的認識(一)
單元教材分析:
本單元是學生在低年級初步認識一些簡單的立體圖下,已經能夠識別出長方體、正方體、圓柱和球等形體,以及前面幾冊教材中還學習了長方形和正方形的特點,周長計算,面積計算的基礎上編寫的。
本單元的教材內容包括長方體(正方體)的認識,長方體和正方體的表面積這兩部分內容。
單元教學目標:
知識與技能目標:
1.能夠認識長方體和正方體,掌握長方體和正方體的特徵,具有初步的立體空間想像能力。
2.能根據長方體和正方體的特徵,認識它們展開圖的形狀,並能辨認長方體和正方體的展開圖。
3.能夠准確的計算長方體和正方體的表面積。
4.能夠准確的計算出多個長方體和正方體堆放時露在外面的表面積。
過程與方法目標:
1.結合具體的長方體和正方體的展開與折疊的情景,經歷探究長方體和正方體表面積的過程,能夠准確的計算長方體和正方體的表面積。
2.結合具體的多個長方體和正方體的堆放情景,經歷探究多個長方體和正方體堆放時露在外面表面積的過程,能夠准確的計算出多個長方體和正方體堆放時露在外面的表面積。
3.通過操作,培養學生的遷移類推能力和抽象概括能力。
情感、態度與價值觀:
1.使學生感受到長方體和正方體的表面積與生活的密切聯系,培養學習數學的良好興趣。
2.感受數學文化的魅力。
3.在操作、思考的過程中,提高對「空間與圖形」內容的學習興趣,逐步形成積極的數學學習情感。
單元教學重點:
1.能夠准確的計算長方體和正方體的表面積。
4.能夠准確的計算出多個長方體和正方體堆放時露在外面的表面積。
單元教學難點:
1.探究長方體和正方體表面積。
2.探究多個長方體和正方體堆放時露在外面表面積。
單元教學關鍵:
會計算長方體和正方體的表面積。
單元課時劃分:
長方體的認識------------------------------------3課時
展開與折疊--------------------------------------1課時
長方體的表面積----------------------------------1課時
露在外面的面 -----------------------------------1課時
練習二------------------------------------------2課時
長方體的認識 (1) 10
教學目標:
知識目標:結合具體的長方體和正方體的認識情景,經歷探究長方體和正方體特點的過程,能夠准確的掌握長方體和正方體的表面特點。
能力目標:能夠認識長方體和正方體,具有初步的立體空間想像能力。
情感目標:使學生感受到長方體和正方體與生活的密切聯系,培養學習數學的良好興趣。
教學重點、難點:
學生能夠熟練的掌握長方體和正方體的表面特點。
教學方法:師生共同歸納和推理
教學准備:長方體模型、正方體模型
教學過程:
一、復習導入:
教師出示教學板書,請學生觀察下列長方形和正方形有什麼特點?
教師:提問學生長方形和正方形有什麼特點?
學生尋找完畢,紛紛舉手准備回答問題。
教師提問學生回答問題。(長方形和正方形都有四個直角;四條邊,每組對邊相等;正方形四條邊都相等。)
二、講授新課:
教師讓學生觀察課本插圖哪些物體的形狀是長方體或正方體?
學生回答:樓房的形狀……
教師提問學生:生活中哪些物體的形狀是長方體或正方體?
學生思考並回答問題。(電視機包裝箱、現代漢語大詞典……)
教師出示長方體和正方體模型,讓學生觀察長方體和正方體有什麼特點?
學生同桌之間交流討論。
教師提問學生長方體和正方體的特點有什麼?
學生回答:(長方體有6個面、8個頂點、12條棱,對面面積相等;正方體有6個面、8個頂點、12條棱,6個面都相等和12條棱相等。)
學生自己填完課本14頁的表格。
三、課堂小結:
同學們,這一節課你學到了哪些知識?(提問學生回答)
板書設計:
長方體的認識
長方體:6個面、8個頂點、12條棱;每組對面面積相等;
正方體:6個面、8個頂點、12條棱,6個面面積都相等;12條棱長度都相等。
❺ 五年級上期數學分數口算列式
分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
一個數除以分數,等於這個數乘以分數的倒數。
甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
比
什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的換算。
倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
❻ 五年級下冊數學全部公式,明天考試了,求你們了
五年級數學下冊概念公式
一、分數乘法、分數除法
1.分數乘法的意義:求幾個相同分數的和的簡便運算
2.分數除法的意義:已知兩個乘數的積和其中一個乘數,求另一個乘數的運算
3.分數乘法的運演算法則:
(1) 分數與整數相乘:分子和整數相乘,分母不變.
(2) 分數與分數相乘:分子與分子相乘,分母與分母相乘,能約分的可以先約分.
4.分數除法的運演算法則:
(1)一個數除以一個整數(0除外)等於這個數乘以這個整數的倒數.
(2)一個數除以一個分數等於這個數乘以這個分數的倒數.
(3) 除以一個數(0除外)等於乘這個數的倒數.
5.如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數.比如1/2的倒數是2,2的倒數是1/2,這兩個數互為倒數.1的倒數是1,0沒有倒數.
6.分數乘、除法的實際問題
(1)求一個數的幾分之幾是多少,用乘法.
(2)已知一個數的幾分之幾是多少,求這個數,用除法,也可以用解方程.
二、分數的混合運算
1.分數混合運算的順序與整數混合運算的順序一樣:先算乘除後算加減,有括弧的先算括弧裡面的,再算括弧外面的.
2.運算定律:
(1)乘法分配律:
(2)乘法結合律:
(3)乘法交換律:
運用運算定律可對分數的混合運算進行簡便運算.
三、長方體的認識、表面積、體積和容積
1.長方體有6個面,一般都是長方形(特殊情況有兩個相對的面是正方形),相對的面面積相等;有8個頂點,12條棱,12條棱可以分為三組:4條長,4條寬,4條高.
2.正方體有6個面,都是面積相等的正方形;有8個頂點,12條棱,每條棱的長度都相等.
3.正方體是特殊的長方體.(長寬高都相等)
4.長方體的棱長總和=(長+寬+高)×4
5.正方體的棱長總和=棱長×12
6.長方體6個面的總面積叫作它的表面積.長方體相對的面的面積相等,前後面的面積=長×高;左右面的面積=寬×高;上下面的面積=長×寬
7.長方體的表面積=(長×寬+長×高+寬×高)×2
8.正方體6個面的總面積叫作它的表面積,6個面的面積都相等.
9.正方體的表面積=棱長×棱長×6
10.物體所佔空間的大小叫作物體的體積.常用的體積單位有:立方厘米,立方分米,立方米.
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米
11.容器所能容納物體的體積叫作容器的容積.常用的容積單位有:升和毫升
1升=1立方分米 1毫升=1立方厘米
❼ 關於分數除法的小知識
1. 乘法除法小知識
乘法除法小知識 1.除法的基本知識是什麼
出發的基本知識包括:除法的意義:已知兩個因數的積與其中一個因數,求另一個因數的運算叫除法.(除法是乘法的逆運算)掌握試商方法和用豎式計算除法.除法分為:平均除和包含除.除法商不變性質:被除數和除數同時乘以或除以同一個數(0除外),商不變.連除性質:一個數連續除以幾個數,等於一個數除以這幾個數的積.理解分數與除法的關系:分子相當於被除數,分數線相當於除號,分母相當於除數.理解比和除法的關系:比的前項相當於被除數,比好相當於除號,後項相當於除數.。
2.五年級小數乘除法知識總結,
1、乘法(1) 整數乘以小數及小數乘以小數:先用整數乘法法則算出積,再看因數中有幾位小數,將得出的積從右往左數幾位,點上小數點。
注意:積末尾有零的,先點小數點再消去。2、除法:(1)除數是整數的小數除法:先用整數除法的法則算出商,然後在商上點上小數點(商的小數點要和被除數的小數點對齊)。
(2)除數是小數的除法:先移動除數的小數點,使除數變成整數,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位(位數不夠的在被除數後面用0補足),然後按照除數是整數的小數除法進行計算。
3.除法的基本知識是什麼
出發的基本知識包括:
除法的意義:已知兩個因數的積與其中一個因數,求另一個因數的運算叫除法。(除法是乘法的逆運算)
掌握試商方法和用豎式計算除法。
除法分為:平均除和包含除。
除法商不變性質:被除數和除數同時乘以或除以同一個數(0除外),商不變。
連除性質:一個數連續除以幾個數,等於一個數除以這幾個數的積。
理解分數與除法的關系:分子相當於被除數,分數線相當於除號,分母相當於除數。
理解比和除法的關系:比的前項相當於被除數,比好相當於除號,後項相當於除數。
4.小數的乘法和除法五年級
1 小數乘法和小數除法知識點整理 1、小數乘法 1、積的擴大縮小規律:1)在乘法里,一個因數不變,另外一個因數擴大(或縮小)a倍,積也擴大(或縮小)a倍.2)在乘法里,一個因數擴大a 倍,另外一個因數擴大(或縮小)b倍,積就擴大(或縮小)a*b倍.3)在乘法里,一個因數縮小a 倍,另外一個因數縮小b倍,積就縮小a*b倍.4)在乘法里,如果一個因數擴大10倍、100倍、1000倍„,另外一個因數縮小10倍、100倍、1000倍„,那麼積的擴大或縮小就看a和b的大小,哪個大就順從哪個.2、積不變規律:在乘法里,一個因數擴大a 倍,另外一個因數縮小a倍,積不變.3、小數乘整數計算方法:1)先把小數擴大成整數 2)按整數乘法乘法法則計算出積 3)看被乘數有幾位小數點,就從積的右邊起數出幾位點上小數點.若積的末尾有0可以去掉 4、小數乘小數的計算方法:1) 先把小數擴大成整數 2)按整數乘法乘法法則計算出積 3)看積中有幾位小數就從積的右邊起數出幾位,點上小數點.如果乘得的積的位數不夠,要在前面用0補足.5、計算結果發現小數末尾有0的,要先點小數點,再把0去掉.順序不可調換.6、積的小數位數等於兩個因數的小數位數之和.7、小數點的位移規律:把一個小數擴大10倍、100倍、1000倍、„„只要把小數點向右移動一位、兩位、三位„„位數不夠時,要用「0」補足.把一個小數縮小10倍、100倍、1000倍、„„只要把小數點向左移動一位、兩位、三位„„位數不夠時,要用「0」補足.數小數點的方法:1、數數字2、數間隔 8、一個數(0除外)乘大於1的數,積比原來的數大.一個數(0除外)乘小於1的數,積比原來的數小.9、小數的四則混合運算和整數相同,都是先算乘法和除法,再算加法和減法,有小括弧的要先算小括弧里的.10、乘法的交換律、結合律、分配律同樣適用於小數乘法,應用這些運算定律,可以使計算簡便.乘法交換律 a*b=b*a 乘法結合律 a*(b*c)=(a*b)*c 乘法分配律 a*(b+c)=a*b+a*c a*(b—c)=a*b — a*c 11、積的近似數:保留a位小數,就看第a+1位,再用四捨五入的方法取值.保留整數:表示精確到個位,看十分位上的數;保留一位小數:表示精確到十分位,看百分位上的數;保留兩位小數:表示精確到百分位,看千分位上的數;„„ (2)按實際需要用「四捨五入法」保留一定的小數位數,求積的近似值.13、小數乘法的意義:求幾個相同數和的簡便運算.2 2、小數除法 1、小數除整數的計算方法:1) 按照整數除法的法則去除 2) 商的小數點要和被除數的小數點對齊 3) 如果除到被除數的末尾仍有餘數就在後面添上0再繼續除.4) 除得的商的哪一位上不夠商1就要在那一位上寫0佔位.2、小數除法的計算方法 1) 一看:看清被除數有幾位小數 2) 二移:把除數和被除數的小數點同時向右移動相同的位置,使除數變成整數,當被除數位數不足時,用「0」補足.3) 三算:按照小數除整數的計演算法則進行計算.3、商不變規律:被除數擴大a倍(或縮小),除數也擴大(或縮小)a倍,商不變.簡言之,被除數和除數同時擴大或者同時縮小相同的倍數,商不變.4、被除數不變,除數擴大(或縮小)a倍,商縮小(或擴大)a倍.被除數擴大(或縮小)a倍,除數不變,商擴大(或縮小)a倍.5、求商的近似值:計算時要比保留的小數多一位.求積的近似值:計算出整個積的值後再去近似值.6、保留商的近似值,小數末尾的0不能去掉.7、循環小數的定義:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數.8、是循環小數必須滿足的條件:1、必須是無限小數.2、一個數字或者幾個數字依次不斷重復出現 9、一個循環小數的小數部分,依次不斷重復出現的一個數字或者幾個數字,叫做這個循環小數的循環節;如5.33„„循環節是3.7.14545„„的循環節是45.10、循環小數的簡便記法:省略後面的「„„」號,在第一個循環節上加點.如:5.33„„=5.3,讀作五點三,三的循環7.14545„„=7.145 ,讀作七點一四五,四五的循環.如果循環節有三個及以上,就在頭尾的數字上打點.如7.123123„„=7.123 11、小數可以分為無限小數和有限小數.小數部分位數有限的叫有限小數,小數部分位數無限的叫無限小數.12、循環小數一定是無限小數,無限小數不一定是循環小數.13、取商的近似值的方法:「四捨五入」法、「進一法」和「去尾法」 在解決問題的時候,可以根據實際情況選擇「進一法」和「去尾法」取商的近似值.14、豎式中的小數點和數位的對齊方式:在加法和減法中,必須小數點對齊;在乘法中,要末尾對齊,在除法時,商的小數點要和被除數的小數點對齊.15、除法性質:a÷b÷c=a÷(b*c) 推廣(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c。
5.【分數乘除法的知識】
分數乘法分數乘整數 分數乘整數,分母不變,分子乘整數,最後不是最簡分數要化成最簡分數. 例1:4/5*3=4*3/5=12/5 例2:3/22*2=3*2/22=6/22=3/11分數乘分數 分數乘分數,用分子乘分子,用分母乘分母,最後不是最簡分數要化成最簡分數. 例1:5/6*1/3=5*1/6*3=5/18 例2:2/5*1/4=2*1/5*4=2/20=1/10[編輯本段]分數除法分數除以整數(1) 分數除以整數,分母不變,如果分子是整數的倍數,則用分子除以整數,最後不是最簡分數要化成最簡分數. 例1:4/15÷2=4÷2/15=2/15 例2:42/30÷7=42÷7/30=6/30=1/5分數除以整數(2) 分數除以整數,分母不變,如果分子不是整數的倍數,則用這個分數乘這個整數的倒數,最後不是最簡分數要化成最簡分數. 例1:3/8÷2=3/8*1/2=3*1/8*2=3/16 例2:4/5÷6=4/5*1/6=4*1/5*6=4/30=2/15分數除以分數 分數除以分數,等於被除數乘除數的倒數,最後不是最簡分數要化成最簡分數. 例1:2/3÷3/4=2/3*4/3=2*4/3*3=8/9 例2:2/15÷1/3=2/15*3=2*3/15=6/15=2/5。
6.五年級小數乘除法知識總結,
會基礎加減乘。
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。小學三年級學會乘法交換律,幾何面積周長等,時間量及單位。
路程計算,分配律,分數小數。小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。小學六年級 比例百分比概率,圓扇圓柱及圓錐。
必背定義、定理公式 三角形的面積=底*高÷2。 公式 S= a*h÷2 正方形的面積=邊長*邊長 公式 S= a*a 長方形的面積=長*寬 公式 S= a*b 平行四邊形的面積=底*高 公式 S= a*h 梯形的面積=(上底+下底)*高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。
長方體的體積=長*寬*高 公式:V=abh 長方體(或正方體)的體積=底面積*高 公式:V=abh 正方體的體積=棱長*棱長*棱長 公式:V=aaa 圓的周長=直徑*π 公式:L=πd=2πr 圓的面積=半徑*半徑*π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。
公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面*積高。
公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式 一、算術方面1、加法交換律:兩數相加交換加數的位置,和不變。2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)*5=2*5+4*56、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
O除以任何不是O的數都得O。簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然後再加減。12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。
假分數大於或等於1。18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面1、單價*數量=總價2、單產量*數量=總產量3、速度*時間=路程4、工效*時間=工作總量5、加數+加數=和 一個加數=和+另一個加數 被減數-減數=差 減數=被減數-差 被減數=減數+差 因數*因數=積 一個因數=積÷另一個因數 被除數÷除數=商 除數=被除數÷商 被除數=商*除數 有餘數的除法: 被除數=商*除數+余數 一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。
例:90÷5÷6=90÷(5*6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1噸=1000千克 1千克= 1000克= 1公斤= 1市斤1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:189、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。
7.小學幾年級開始學習乘除法
二年級了解乘法口訣運算,三年級學習大部分有關乘除法的知識。
乘除法簡介:
乘除法是一種求解多目標規劃問題的方法。乘除法(multiplication division method)一種求解多目標規劃問題的方法.對於同時具有極小化和極大化目標函數的多目標規劃問題,設前r個目標人<x)<k=1,2,""",r)要求極小化,後m-r個目標九<x)<k=r}-l,w,m)要求極大化,則問題可歸為求「乘除」目標形式的數值極小化問題的最優解,其中九<x)}0<k=1,2,""",m)。
九九乘法表
1*1=1
1*2=2 2*2=4
1*3=3 2*3=6 3*3=9
1*4=4 2*4=8 3*4=12 4*4=16
1*5=5 2*5=10 3*5=15 4*5=20 5*5=25
1*6=6 2*6=12 3*6=18 4*6=24 5*6=30 6*6=36
1*7=7 2*7=14 3*7=21 4*7=28 5*7=35 6*7=42 7*7=49
1*8=82*8=16 3*8=24 4*8=32 5*8=40 6*8=48 7*8=56 8*8=64
1*9=9 2*9=18 3*9=27 4*9=36 5*9=45 6*9=54 7*9=63 8*9=72 9*9=81
8.有理數乘法除法知識要點和解題方法
有理數就是:整數 分數 小數[包括負數,不包括無限循環小數]
乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘,任何數與0相乘,都得0
除法法則:兩數相除,同號得正,異號得負,並把絕對值相除,0除以任何一個不等於0的數,都得0.0除以一個不為0的數,等於乘這個數的倒數,0不能做除數。
1.牢固掌握有理數的有關概念,如相反數,倒數,絕對值,算術平方根等,特別是絕對值。真正掌握數形結合的思想解題。
2.運算中注意符號和運算順序,多加練習,提高運算速度和准確率。
3.有括弧的先算括弧裡面的
好不容易打出來的
9.關於小數乘除法的故事、常識、生活中的小數乘除法事例
小數點的故事:豬八戒賣菜
話說孫悟空西天取經回到花果山後,常常變做凡人到人間幫忙。
這天約了八戒一起到人間到處幫忙。八戒和悟空來到農貿市場,看到一個農民伯伯正在賣蘿卜和番茄。周圍全是人,原來在搞蘿卜和番茄大減價的活動呀!
「蘿卜每千克賣0.5元,番茄每千克賣1.2元。」農民伯伯吆喝著。
「我們來幫助這個農民伯伯來賣菜吧,你看他多幸苦。」豬八戒提議說。孫悟空一口同意,兩人搖身一變,變成了兩個胸前飄著鮮紅的紅領巾的小學生,一個胖,一個瘦。很快就獲得了農民伯伯的同意,可以正式上崗了。
「我買2元的蘿卜。」一個老奶奶對八戒說。「行,給你。」八戒把菜隨便用秤稱了說。
「這多少千克呀?」老奶奶問。
「呃,這……2÷0.5到底是多少千克呢?」八戒犯難了。
「我來吧!」悟空幫八戒重新稱量下蘿卜,遞給老奶奶,「2÷0.5=4,是四千克。」
「我要買3元番茄。」一個阿姨說。「這是你的菜。」八戒在悟空的幫助下很快稱量出了重量。
「你的秤准嗎?我買3元,是多少千克呀?」阿姨看見是兩個小學生,有點不放心地問。
悟空說:「3÷1.2=2.5,你買了2.5千克。」阿姨一聽,滿意地走了。
清閑的時候,八戒問悟空:「猴哥,你怎麼算得這么快呀?」
「我呀靠移動小數點。移動小數點把這兩題轉化成除數是整數的除法,就簡便多了。」悟空接著說,「把2÷0.5轉換成20÷5。再說3÷1.2吧,先把除數的小數點向右移動一位,1.2變成12;再把被除數的小數點也向右移動一位,3的小數點向右移動一位,變成30,30÷12=2.5。但是要注意除數和被除數的小數點向右移動的位數一定要相同喲。」
「如果不是你猴哥幫忙,我呀就要丟臉嘍。謝謝猴哥了!」
他們很快就幫助農民伯伯賣光了蘿卜和番茄,農民伯伯連聲感謝!八戒笑得最開心了!
還有一些小故事,比如:
小數點搬家(掌握小數點移動引起小數大小變化的規律)
明白小數點向左移動一位,小數就縮小到原來的十分之一;小數點向左移動兩位,小數就縮小到原來的百分之一……以此類推。
街心廣場(積的小數位數與乘數的小數位數的關系)
積的小數位數與乘法的小數位數的關系:小數乘法中各個因數中小數的位數和就是這道題中積的小數的位數。
包裝盒子(小數乘法2)
小數乘小數計算方法,即將小數乘法轉化為整數乘法進行計算。根據乘數擴大的倍數,將積縮小相同倍數,進一步體會到兩個乘數共有幾位小數,積就有幾位小數。
爬行最慢的哺乳動物(小數乘法3)
進一步理解小數乘小數的計算方法即兩個因數里共有幾位小數,積就有幾位小數;當其中的一個因數是整十數時,積中如果有一位小數,就在末尾畫掉一個零……
手拉手(小數的混合運算)
小數四則混合運算的運算順序與整數四則混合運算的順序相同。整數的運算定律在小數運算中仍然適用。例如乘法的結合律,交換律,分配律。等等。
生活中小樹乘除法的例子很多的,比如你家裡的用電量,50.8度,用水63.2噸,菜場買菜
2塊5的白菜買一斤半等等。
❽ 小學五年級數學知識點
北師大版小學數學五年級(下冊)知識點
一單元:《分數乘法》
分數乘法(一)
知識點:1、理解分數乘整數的意義。分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2、分數乘整數的計算方法。分母不變,分子和整數相乘的積作分子。能約分的要約成最簡分數。
3、計算時,可以先約分在計算。
分數乘法(二)
知識點:1、結合具體情境,進一步探索並理解分數乘整數的意義,並能正確進行計算。
2、能夠求一個數的幾分之幾是多少。
3、理解打折的含義。例如:九折,是指現價是原價的十分之九。
分數乘法(三)
知識點:1、分數乘分數的計算方法,並能正確進行計算。
分子相乘做分子,分母相乘做分母,能約分的可以先約分。計算結果要求是最簡分數。
2、比較分數相乘的積與每一個乘數的大小。
真分數相乘積小於任何一個乘數;真分數與假分數相乘積大於真分數小於假分數。
二單元:《長方體(一)》
長方體的認識
知識點:1、認識長方體、正方體,了解各部分的名稱。