① 什麼是數值計算
數值計算指有效使用數字計算機求數學問題近似解的方法與過程,以及由相關理論構成的學科。
數值計算主要研究如何利用計算機更好的解決各種數學問題,包括連續系統離散化和離散形方程的求解,並考慮誤差、收斂性和穩定性等問題。從數學類型分,數值運算的研究領域包括數值逼近、數值微分和數值積分、數值代數、最優化方法、常微分方程數值解法、積分方程數值解法、偏微分方程數值解法、計算幾何、計算概率統計等。
隨著計算機的廣泛應用和發展,許多計算領域的問題,如計算物理、計算力學、計算化學、計算經濟學等都可歸結為數值計算問題。
(1)數值理論與計算方法擴展閱讀:
構造數值積分公式最通常的方法是用積分區間上的n 次插值多項式代替被積函數,由此導出的求積公式稱為插值型求積公式。特別在節點分布等距的情形稱為牛頓-柯茨公式,例如梯形公式與拋物線公式就是最基本的近似公式。但它們的精度較差。
龍貝格演算法是在區間逐次分半過程中,對梯形公式的近似值進行加權平均獲得准確程度較高的積分近似值的一種方法,它具有公式簡練、計算結果准確、使用方便、穩定性好等優點,因此在等距情形宜採用龍貝格求積公式。
當用不等距節點進行計算時,常用高斯型求積公式計算,它在節點數目相同情況下,准確程度較高,穩定性好,而且還可以計算無窮積分。數值積分還是微分方程數值解法的重要依據。許多重要公式都可以用數值積分方程導出。
② 有哪些值得推薦的《數值分析》(數值計算方法)教材或者參考書
有:李慶揚的《數值分析》 、喻文健 的《數值分析與演算法》 、關治的《數值分析基礎》。
數值分析,為數學的一個分支,是研究分析用計算機求解數學計算問題的數值計算方法及其理論的學科。它以數字計算機求解數學問題的理論和方法為研究對象,為計算數學的主體部分。數值分析的目的是設計及分析一些計算的方式,可針對一些問題得到近似但夠精確的結果。
數值分析中,簡單的問題是求出函數在某一特定數值下的值。直覺的方法是將數值代入函數中計算,不過有時此方式的效率不佳。像針對多項式函數的求值,較有效率的方式是秦九韶演算法,可以減少乘法及加法的次數。若是使用浮點數,很重要的是是估計及控制舍入誤差。
求解方程,首先會依方程式是否線性來區分,例如方程式 2x+5=3是線性方程式,而2x25=3是非線性方程式。此領域許多的研究都和求解線性方程組有關。直接法是線性方程組的系數以矩陣來表示。
再利用矩陣分解的方式求解,這些方法包括高斯消去法、LU分解,對於對稱矩陣(或埃爾米特矩陣)及正定矩陣可以用喬萊斯基分解,非方陣的矩陣則可以用QR分解。迭代法有雅可比法、高斯–塞德迭代法、逐次超松馳法(SOR)及共軛梯度法,一般會用在大型的線性方程組中。
③ 數值計算方法的主要研究對象有哪些其常用基本演算法主要包括哪三個方面
數值計算方法的主要研究對象:研究各種數學問題的數值方法設計、分析、有關的數學理論和具體實現。其常用基本演算法在數值分析中用到迭代法的情形會比直接法要多。例如像牛頓法、二分法、雅可比法、廣義最小殘量方法及共軛梯度法等等。在計算矩陣代數中,大型的問題一般會需要用迭代法來求解。
許多時候需要將連續模型的問題轉換為一個離散形式的問題,而離散形式的解可以近似原來的連續模型的解,此轉換過程稱為離散化。
例如求一個函數的積分是一個連續模型的問題,也就是求一曲線以下的面積若將其離散化變成數值積分,就變成將上述面積用許多較簡單的形狀(如長方形、梯形)近似,因此只要求出這些形狀的面積再相加即可。
(3)數值理論與計算方法擴展閱讀
數值分析也會用近似的方式計算微分方程的解,包括常微分方程及偏微分方程。
常微分方程往往會使用迭代法,已知曲線的一點,設法算出其斜率,找到下一點,再推出下一點的資料。歐拉方法是其中最簡單的方式,較常使用的是龍格-庫塔法。
偏微分方程的數值分析解法一般都會先將問題離散化,轉換成有限元素的次空間。可以透過有限元素法、有限差分法及有限體積法,這些方法可將偏微分方程轉換為代數方程,但其理論論證往往和泛函分析的定理有關。另一種偏微分方程的數值分析解法則是利用離散傅立葉變換或快速傅立葉變換。
④ 數值計算方法
一、數值的計算方法有:
1、有限元法
有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點。
一般的迭代方法可以迅速地將擺動誤差衰減,但對那些低頻分量,迭代法的效果不是很顯著。
⑤ 數值計算方法概述
在采礦工程中,數值模擬方法不僅能模擬岩體復雜的力學和結構特徵,還能很方便地解決現場監測過程中需要大量人力、物力而無法完成的、現有力學理論不能求解的復雜形體問題,並對礦山岩體穩定性進行預測與預報。
關於岩土工程的數值分析方法,很多學者都作過系統綜述[53,68,72],筆者只擬簡單介紹。岩土工程數值分析方法,主要分為三大類,如圖7-1所示。
圖7-1 邊坡工程數值分析方法
(1)連續介質數值分析方法
連續介質數值分析方法的理論基礎是彈(塑)性力學。因此,在該類數值分析方法公式的推導過程中,需要滿足基本方程和邊界條件。只是在求解手段上,採用了不同於彈性力學的各種近似解法。這類數值分析方法包括有限差分法、有限單元法和邊界單元法等,它適用於連續介質體的地下工程圍岩與結構的應力分析和位移求解。
(2)非連續介質數值分析方法
非連續介質數值分析方法的理論基礎是牛頓運動定律,它並不滿足結構的位移連續條件,但是可以求出結構在平衡狀態下的位移或者在不可能處於平衡狀態時的破壞模式。此外,盡管結構不受位移連續的約束,但應滿足給定的單元和交界面的本構定律。這類數值分析方法主要有離散單元法和不連續變形分析(DDA)。這些數值分析方法可用於分析節理岩體可能發生的不連續變形,如洞室圍岩附近岩塊的分離與滑落等。
(3)混合介質數值分析方法
混合介質數值分析方法是連續和不連續分析方法的耦合。在地下結構的某些區域(如洞室附近),圍岩體由於開挖影響而發生塊體的分離而不連續,在另外區域(如遠離洞室),則岩體一般仍相互聯系而處於連續狀態。因此,考慮兩種不同力學介質的耦合分析很必要。目前常見的耦合方法有有限元與離散元的耦合、邊界元與離散元的耦合等。混合介質吸取連續介質和非連續介質兩種數值分析方法中的優點,在可能發生不連續變形的岩體,採用非連續介質方法模擬,而遠離洞室的岩體一般仍處於連續狀態,可採用連續介質模型分析。
本章分別採用有限元強度折減法、有限元和離散元相結合的CDEM法、FLAC差分法,開展安家嶺露天礦露天井工聯合開採的數值模擬分析,研究露天開采和井工開採的相互作用及影響規律。
⑥ 理工科為何要學習數值計算方法
是科學計算的核心理論和基本方法。它對培養學生的科學計算能力和解決實際問題的能力具有不可替代的作用。理工科為何要學習數值計算方法因為是科學計算的核心理論和基本方法。數值計算是以數學分析、高等代數等數學理論為基礎,提出、發展、分析和應用適合於計算機上使用的科學計算方法的重要數學分支。
⑦ 傳統的數值計算方法包括哪些內容現在的數值計算方法包括哪些內容
隨著計算機和計算方法的飛速發展,幾乎所有學科都走向定量化和精確化,從而產生了一系列計算性的學科分支,如計算物理、計算化學、計算生物學、計算地質學、計算氣象學和計算材料學等,計算數學中的數值計算方法則是解決「計算」問題的橋梁和工具。我們知道,計算能力是計算工具和計算方法的效率的乘積,提高計算方法的效率與提高計算機硬體的效率同樣重要。科學計算已用到科學技術和社會生活的各個領域中。
數值計算方法,是一種研究並解決數學問題的數值近似解方法, 是在計算機上使用的解數學問題的方法,簡稱計算方法。
在科學研究和工程技術中都要用到各種計算方法。 例如,在航天航空、地質勘探、汽車製造、橋梁設計、 天氣預報和漢字字樣設計中都有計算方法的蹤影。
計算方法既有數學類課程中理論上的抽象性和嚴謹性,又有實用性和實驗性的技術特徵, 計算方法是一門理論性和實踐性都很強的學科。 在70年代,大多數學校僅在數學系的計算數學專業和計算機系開設計算方法這門課程。 隨著計算機技術的迅速發展和普及, 現在計算方法課程幾乎已成為所有理工科學生的必修課程。
計算方法的計算對象是微積分,線性代數,常微分方程中的數學問題。 內容包括:插值和擬合、數值微分和數值積分、求解線性方程組的直接法和迭代法、 計算矩陣特徵值和特徵向量和常微分方程數值解等問題。
⑧ 數值計算方法
數字信號處理是把信號用數字或符號表示成序列,通過計算機或通用(專用)信號處理設備,用數值計算方法進行各種處理,達到提取有用信息便於應用的目的。例如:濾波、檢測、變換、增強、估計、識別、參數提取、頻譜分析等。
一般地講,數字信號處理涉及三個步驟:
⑴模數轉換(A/D轉換):把模擬信號變成數字信號,是一個對自變數和幅值同時進行離散化的過程,基本的理論保證是采樣定理。
⑵數字信號處理(DSP):包括變換域分析(如頻域變換)、數字濾波、識別、合成等。
⑶數模轉換(D/A轉換):把經過處理的數字信號還原為模擬信號。通常,這一步並不是必須的。 作為DSP的成功例子有很多,如醫用CT斷層成像掃描儀的發明。它是利用生物體的各個部位對X射線吸收率不同的現象,並利用各個方向掃描的投影數據再構造出檢測體剖面圖的儀器。這種儀器中fft(快速傅里葉變換)起到了快速計算的作用。以後相繼研製出的還有:採用正電子的CT機和基於核磁共振的CT機等儀器,它們為醫學領域作出了很大的貢獻。
信號處理的目的是:削弱信號中的多餘內容;濾出混雜的雜訊和干擾;或者將信號變換成容易處理、傳輸、分析與識別的形式,以便後續的其它處理。
⑨ 數值計算方法
1. 數值計算的結果是離散的,並且一定有誤差,這是數值計算方法區別與解析法的主要特徵。 2. 注重計算的穩定性。控制誤差的增長勢頭,保證計算過程穩定是數值計算方法的核心任務之一。 3. 注重快捷的計算速度和高計算精度是數值計算的重要特徵。 4. 注重構造性證明。 5.數值計算主要是運用MATLAB這個數學軟體來解決實際的問題 6.數值計算主要是運用有限逼近的的思想來進行誤差運算數值積分
⑩ 計算機專業本科的《數值計算方法》都講了哪些內容
《數值計算方法》是數學類專業(如信息與計算專業、數學與應用數學專業)的專業基礎課,主要包括數值逼近、數值代數和微分方程數值解三個部分。隨著學分制改革的推進,該課程也可作為學校部分工科專業學生的選修課。以前我校面向部分工科專業學生開設的《計算方法》課程的大部分內容都包含在《數值計算方法》課程中。
隨著計算機技術的發展和科學技術的進步,科學計算的應用范圍已擴大到許多的學科領域,已經形成了一些邊緣學科。例如,計算物理、計算力學、計算化學等。目前,實驗、理論和計算已經成為了人們進行科學活動的三大方法。對從事工程與科學技術工作的人員,學習和掌握《數值計算方法》是非常必要的。
數值計算方法是數學的一個分支,但它又不象純數學那樣只研究數學本身的理論,而是把數學理論與計算方法緊密結合,既有純數學高度抽象性的特點,又有應用的廣泛性與實際試驗的高度技術性的特點,是一門與計算機使用密切結合的實用性很強的數學課程,著重研究數學問題的數值方法及其理論。
http://www1.snut.e.cn/math/2007/reseach/math_web/