㈠ 數值計算方法
1. 數值計算的結果是離散的,並且一定有誤差,這是數值計算方法區別與解析法的主要特徵。 2. 注重計算的穩定性。控制誤差的增長勢頭,保證計算過程穩定是數值計算方法的核心任務之一。 3. 注重快捷的計算速度和高計算精度是數值計算的重要特徵。 4. 注重構造性證明。 5.數值計算主要是運用MATLAB這個數學軟體來解決實際的問題 6.數值計算主要是運用有限逼近的的思想來進行誤差運算數值積分
㈡ 數值計算方法的主要研究對象有哪些其常用基本演算法主要包括哪三個方面
數值計算方法的主要研究對象:研究各種數學問題的數值方法設計、分析、有關的數學理論和具體實現。其常用基本演算法在數值分析中用到迭代法的情形會比直接法要多。例如像牛頓法、二分法、雅可比法、廣義最小殘量方法及共軛梯度法等等。在計算矩陣代數中,大型的問題一般會需要用迭代法來求解。
許多時候需要將連續模型的問題轉換為一個離散形式的問題,而離散形式的解可以近似原來的連續模型的解,此轉換過程稱為離散化。
例如求一個函數的積分是一個連續模型的問題,也就是求一曲線以下的面積若將其離散化變成數值積分,就變成將上述面積用許多較簡單的形狀(如長方形、梯形)近似,因此只要求出這些形狀的面積再相加即可。
(2)誰有數值計算方法擴展閱讀
數值分析也會用近似的方式計算微分方程的解,包括常微分方程及偏微分方程。
常微分方程往往會使用迭代法,已知曲線的一點,設法算出其斜率,找到下一點,再推出下一點的資料。歐拉方法是其中最簡單的方式,較常使用的是龍格-庫塔法。
偏微分方程的數值分析解法一般都會先將問題離散化,轉換成有限元素的次空間。可以透過有限元素法、有限差分法及有限體積法,這些方法可將偏微分方程轉換為代數方程,但其理論論證往往和泛函分析的定理有關。另一種偏微分方程的數值分析解法則是利用離散傅立葉變換或快速傅立葉變換。
㈢ 黃雲清《數值計算方法》電子書,有誰共享下啊
網上應該有
㈣ 誰知道數值計算方法中 拉蓋爾多項式 的C語言程序,求。。。。。
你確定要求多項式而不是求值,C不適合干這個,用Matlab吧,少年……
㈤ 經濟研究中的計算方法的問題有哪些
對於現在越來越重視經濟生活的現實中。很多人開始研究起經濟中的計算方法,那麼經濟研究中的計算方法問題有哪些?從一些先輩的研究經濟中可以看出,結合是一個非常重要的思想,結合既是思想觀念又是工作方法,將不同的事物在思想中相互聯系,就可以促進工作,推動事物的發展,而研究經濟中也是這樣的。
三、數值計算方法數值計算方法是根據經濟研究中的實際解決問題需要產生的,並隨著科技的發展而不斷進行創新。其中很多都是一些數學的公式,數據擬合法非線性方程的數值解釋,代入方程組的數值求解來進行進行經濟的計算方法,所以進行研究中的計算方法,數值計演算法是一個非常重要的方法。
㈥ 有哪些值得推薦的《數值分析》(數值計算方法)教材或者參考書
有:李慶揚的《數值分析》 、喻文健 的《數值分析與演算法》 、關治的《數值分析基礎》。
數值分析,為數學的一個分支,是研究分析用計算機求解數學計算問題的數值計算方法及其理論的學科。它以數字計算機求解數學問題的理論和方法為研究對象,為計算數學的主體部分。數值分析的目的是設計及分析一些計算的方式,可針對一些問題得到近似但夠精確的結果。
數值分析中,簡單的問題是求出函數在某一特定數值下的值。直覺的方法是將數值代入函數中計算,不過有時此方式的效率不佳。像針對多項式函數的求值,較有效率的方式是秦九韶演算法,可以減少乘法及加法的次數。若是使用浮點數,很重要的是是估計及控制舍入誤差。
求解方程,首先會依方程式是否線性來區分,例如方程式 2x+5=3是線性方程式,而2x25=3是非線性方程式。此領域許多的研究都和求解線性方程組有關。直接法是線性方程組的系數以矩陣來表示。
再利用矩陣分解的方式求解,這些方法包括高斯消去法、LU分解,對於對稱矩陣(或埃爾米特矩陣)及正定矩陣可以用喬萊斯基分解,非方陣的矩陣則可以用QR分解。迭代法有雅可比法、高斯–塞德迭代法、逐次超松馳法(SOR)及共軛梯度法,一般會用在大型的線性方程組中。
㈦ 誰有 《數值計算方法 第三版》高等教育出版社 主編朱建新、李有法 課後答案以及 山西師范大學 的歷年考題
主編朱建新、李有法課後答案以及山西師范大學的歷年考題:
有限元法:有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式。
藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數 形式,便構成不同的有限元方法。
在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元 上的近似解構成。
(7)誰有數值計算方法擴展閱讀:
構造數值積分公式最通常的方法是用積分區間上的n 次插值多項式代替被積函數,由此導出的求積公式稱為插值型求積公式。特別在節點分布等距的情形稱為牛頓-柯茨公式,例如梯形公式與拋物線公式就是最基本的近似公式。但它們的精度較差。
龍貝格演算法是在區間逐次分半過程中,對梯形公式的近似值進行加權平均獲得准確程度較高的積分近似值的一種方法,它具有公式簡練、計算結果准確、使用方便、穩定性好等優點,因此在等距情形宜採用龍貝格求積公式。
㈧ 數值計算方法、有限元法、無網格法的關系
有限元邊界元之類的演算法都是用來解帶有邊界條件的偏微分方程, 數值計算教材一般不會介紹這類特殊問題的演算法, 一般只介紹最基本常見的演算法
有限元是有網格的演算法, 跟無網格的演算法明顯是不同的, 所謂「交叉」,既然是解同類的問題, 有交叉也有各自特點這是正常的