A. 請問叉乘是如何運算的
向量的叉乘運演算法則為|向量c|=|向量a×向量b|=|a||b|sin<a,b>,向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a。
點乘,也叫向量的內積、數量積。顧名思義,求下來的結果是一個數。
向量a·向量b=|a||b|cos<a,b>
(1)叉乘法計算方法擴展閱讀:
定向量的起點(A)和終點(B),可將向量記作AB(並於頂上加→)。在空間直角坐標系中,也能把向量以數對形式表示,例如xOy平面中(2,3)是一向量。
在物理學和工程學中,幾何向量更常被稱為矢量。許多物理量都是矢量,比如一個物體的位移,球撞向牆而對其施加的力等等。與之相對的是標量,即只有大小而沒有方向的量。一些與向量有關的定義亦與物理概念有密切的聯系,例如向量勢對應於物理中的勢能。
B. 連續叉乘公式
叉乘公式是a×(b×c)=b(ac)−c(ab),向量積,數學中又稱外積,叉積,物理中稱矢積,叉乘,是一種在向量空間中向量的二元運算,它的運算結果是一個向量而不是一個標量。
在數學中,向量(也稱為歐幾里得向量、幾何向量、矢量),指具有大小(magnitude)和方向的量。
矩陣相乘最重要的方法是一般矩陣乘積。它只有在第一個矩陣的列數(column)和第二個矩陣的行數(row)相同時才有意義。
一般單指矩陣乘積時,指的便是一般矩陣乘積。一個m×n的矩陣就是m×n個數排成m行n列的一個數陣。由於它把許多數據緊湊地集中到了一起,所以有時候可以簡便地表示一些復雜的模型,如電力系統網路模型。