㈠ 7.05x9.9簡便運算
巧算7.05×9.9
計算步驟分析:
7.05×9.9
=7.05×10-7.95×0.1
=70.5-0.795
=69.795
資料解析:加減乘除法叫做四則混合計算,需要遵循運算順序,例如:同級運算需從左到右依次計算,兩級運算時先算乘除後算加減,有括弧先算括弧裡面的,有乘方需要先算乘方
存疑請追問,滿意請採納
(1)63450簡便計算方法擴展閱讀:
步驟一:9×705=6345
步驟二:9×705=63450
乘法豎式計算7.05×9.9結果向左移動3位小數點積為69.795
解題概念:乘法豎式計算是將多位數相乘轉換為一位數乘多位數結果相加,這樣的計算方法主要是簡化了多位數乘多位數,使得計算更方便
㈡ 簡便運算的技巧
簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
2/4
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百【例1】;
2、補上一個數,能夠與其他數湊整,最後再減去這個數
分組湊整法
在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。【例3】
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法
使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數,詳見【例4】。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
做簡算,是享受。細觀察,找特點。
連續加,結對子。連續乘,找朋友。
連續減,減去和。連續除,除以積。
減去和,可連減。除以積,可連除。
乘和差,分別乘。積加減,莫慌張,
同因數,提出來,異因數,括弧放。
同級算,可交換。特殊數,巧拆分。
合理算,我能行。
1方法一:帶符號搬家法
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
例如:
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)
例如:
2方法二:結合律法
(一)加括弧法
1.在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。
2.在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。
(二)去括弧法
1.在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加。)。
2.在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)。
3方法三:乘法分配律法
1.分配法
括弧里是加或減運算,與另一個數相乘,注意分配
例:8×(12.5+125)
=8×12.5+8×125
=100+1000
=1100
2.提取公因式
注意相同因數的提取。
例:9×8+9×2
=9×(8+2)
=9×10
=90
3.注意構造,讓算式滿足乘法分配律的條件。
例:8×99
=8×(100-1)
=8×100-8×1
=800-8
=792
4方法四:湊整法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難嘛。
例:9999+999+99+9
=(10000-1)+(1000-1)+(100-1)+(10-1)
=(10000+1000+100+10)-4
=11110-4
=11106
5方法五:拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。
例:32×125×25
=(4×8)×125×25
=(4×25)×(8×125)
=100×1000
=100000
6方法六:巧變除為乘
除以一個數等於乘以這個數的倒數
7方法六:裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法.常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。
遇到裂項的計算題時,需注意:
1.連續性
2.等差性
計算方法:頭減尾,除公差。
8方法六:找朋友法
例題:
例1:
283+52+117+148
=(283+117)+(52+48)
(運用加法交換律和結合律)。
減號或除號後面加上或去掉括弧,後面數值的運算符號要改變。
例2:
657-263-257
=657-257-263
=400-263
(運用減法性質,相當加法交換律。「帶符號搬家」)
例3:
195-(95+24)
=195-95-24
=100-24
(運用減法性質)
例4:
150-(100-42)
=150-100+42
(去括弧時,括弧前面是減號,括弧裡面的運算符號要變成逆運算)
例5:
(0.75+125)x8
=0.75x8+125x8=6+1000
. (運用乘法分配律))
例6:
( 125-0.25)x8
=125x8-0.25x8
=1000-2
(同上)
例7:
(1.125-0.75)÷0.25
=1.125÷0.25-0.75÷0.25
=4.5-3=1.5。
( 運用除法性質)
例8:
(450+81)÷9
=450÷9+81÷9
=50+9=59.
(同上,相當乘法分配律)
例9:
375÷(125÷0.5)
=375÷125x0.5=3x0.5=1.5.
(運用除法性質)
例10:
4.2÷(0.6x0.35)
=4.2÷0.6÷0.35
=7÷0.35=20
(運用除法性質)
例11:
12x125x0.25x8
=(125x8)x(12x0.25)
=1000x3=3000.
(運用乘法交換律和結合律)
例12:
(175+45+55+27)-75
=175-75+(45+55)+27
=100+100+27=227.
(運用加法性質和結合律)
㈢ 64×50用簡便方法
用乘法分配律或乘法結合律
乘法分配律
把64拆成60和4,然後分別用60和4去和50相乘,然後把他們兩個得到的積相加,答案是3200。
乘法結合律
把64拆成8和8,用8×8×50得到的積就是64×50的積,答案也是3200。
㈣ 簡便計算方法
常用的簡便演算法有以下幾種
一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000
在本道題目中,利用第一種方法即可,也就是51乘以59加41的和再加上22乘以68加上32的和,等於5100加上2200等於6300
㈤ 用簡便方法計算 簡便方法計算是什麼
1、簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。如將上式中的+變為x,運用乘法結合律也可簡便計算。
2、簡便方法是一種特殊的計算,運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。
3、在數學當中運用簡便計算方法可以很大程度節省做題的時間。
4、簡便計算使得學生在短暫的時間內快速准確地算出正確答案。
5、簡便運算與四則混合運算的演算法是有區別的,它不按四則混合運算的運算順序進行運算,而是運用各種運算性質和運算定律進行運算,是一種特別的運算方式。
㈥ 67✘35等於多少簡便方法計算
因為35=30+5,所以原式等於67×(30+5),運用乘法分配律就是有67×30+67×5=2345
㈦ 4×125×50,怎樣簡便怎樣算
回答:
4×125×50
=500×50
=25000
記住親情數:4×125=500,8×125=1000
㈧ 四年級數學簡便計算方法技巧是什麼
四年級數學簡便計算方法技巧:
1、分配法
括弧里是加或減運算,與另一個數相乘,注意分配。例:45×(10+2)=45×10+45×2=450+90=540
2、提取公因式
注意相同因數的提取。例:35×78+22×35=35×(78+22)=35×100=3500這里35是相同因數。
3、交換律(帶符號搬家法)
當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。適用於加法交換律和乘法交換律。
例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81
4、借來還去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。
四年級數學簡便方法:
1、加法的簡便運算。加法進行簡便運算運用到的運算定律主要用兩個:加法交換律和加法結合律,當然還有其它靈活處理的方法,其基本原則就是湊十、湊百等,總之進行簡便運算處理後要有利於我們進行口算得出結果。
2、乘法的簡便運算之一。巧用乘法交換律和乘法結合律進行簡便運算。其基本方法也是通過交換和結合達到湊成整十、整百、整千的數,便於我們口算出結果。
3、減法的簡便運算。減法的簡便運算主要是運用減法的運算性質,即連減兩個數等於減去這兩個數的和。
㈨ 簡便運算的16種運算方法是什麼
一、運用乘法分配律簡便計算
乘法分配律指的是:
例:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
二、基準數法
在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法結合律法
對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
(9)63450簡便計算方法擴展閱讀:
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是ax(b+c)=axb+axc其中a,b,c是任意實數。相反的,axb+axc=ax(b+c)叫做乘法分配律的逆運用(也叫提取公約數),尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相乘。
乘法結合律
乘法結合律也是做簡便運算的一種方法,它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。
㈩ 4×64×50用簡便方法計算
4×64×50
=4×50×64
=200x64
=12800
希望幫到你 望採納 謝謝 加油