導航:首頁 > 計算方法 > 很快能算出來的計算方法

很快能算出來的計算方法

發布時間:2023-01-20 06:05:44

如何快速算加減法

步驟/方法

加法
第1節加大減差法
方法:在一個加式里,如果被加數或加數有一個接近整十、整百、整千等,都以整數來加,然後再減去這個差數(即補數),這樣計算起來十分方便。幼兒加減法手指速算
口訣:用第一個加數加上第二個加數的整十、整百、整千……再減去第二個加數與整十、整百、整千……的差,等於和。
第2節求只是兩個數字位置變換兩位數的和
方法:在一個兩位數的加式里,如果被加數的十位數和加數的個位數相同,而被加數的個位數又和加數的十位數相同,就將被加數的十位數和個位數相加之和再乘以11,即為這個加式的和。
口訣:(首尾)×11=和幼兒加減法手指速算
例:5885=(58)×11=143
第3節一目三行加法
方法:若三行數在一起相加,未加之前先虛進1,把第一位和末尾第二位之間的數看作中間數,湊9棄掉,剩幾寫幾,末尾一位數湊10棄掉,剩幾寫幾,即為所求三行之和。
口訣:提前虛進1,中間棄9,末尾棄10。幼兒加減法手指速算
注意三個重點:
相加不夠9的用分段法:直接相加,並要提前虛進1;
中間數相加大於19的(棄19),前面多進1;
末位數相加大於20的(棄20),前邊多進1.

減法
第1節減大加差法
方法:在一個減式里,如果被減數的後幾位數值較小,而減數的後幾位數值較大,往往要向前借好幾位時,則應將減數中加上一個數(即補數)變成整數,從被減數中減去,然後再加上這個補數,即得最終差數。幼兒加減法手指速算
口訣:用被減數減去減數的整十、整百、整千……再加上減數與整十、整百、整千……的差,等於差。
第2節求只是數字位置顛倒兩個兩位數的差
方法:在一個兩位數的減式里,如果被減數的十位數值與減數的個位數值相同,而被減數的個位數值又與減數的十位數值相同時,用被減數的十位數值,減去被減數的個位數值,再乘以9等於差。幼兒加減法手指速算
口訣:用被減數的十位數減去它的個位數,再乘以9,等於差。
例:74-47=(7-4)×9=27
第3節求只是首尾換位,中間數相同的兩個三位數的差
方法:被減數的百位數減去個位數的差乘以9,分別將乘積的十位數值作為百位數,將乘積的個位數值仍作為個位數,兩數中間寫上一個9(即十位),便是這個減式的差。
口訣:用被減數的百位數減去它的個位數,再乘以9,得到一個兩位數,再在這個數中間寫上9,就等於這兩個數的差。
例:936-639=(9-6)×9=3×9=27=2(9)7
第4節求兩個互補數的差
如何求一個數的補數?從十位數起向左邊,無論有多少位數,都給它湊成9,個位數(即末尾一個數)湊成10即可,這就是它的補數。
互補的概念:兩數相加(和)等於整10、整100、整1000……叫互補。
求補數的方法:前湊9,後湊10。
口訣:兩位互補的數相減:減50後,再乘以2等於差;
三位互補的數相減:減500後,再乘以2等於差;
四位互補的數相減:減5000後,再乘以2等於差;
……依此類推。幼兒加減法手指速算

❷ 小學生數學快速計算的幾個方法

1、十幾乘十幾
口訣:十幾+另一數的個位,尾X尾,相加的和加上相乘的積,個位與十位對齊,注意要進位
如:15X16=240 用口訣計算:15+6=21,5X6=30,210+30=240
13X14=182用口訣計算:13+4=17,3X4=12,170+12=182
大家可以試著計算 11X13,12X16,16X17

2、個位與十位互換的兩位數相加
口訣:(個位+十位)X11
如:67+76=143用口訣計算:(6+7)X11=143
93+39=132用口訣計算:(9+3)X11=132
大家可以試著計算 34+43,56+65,78+87

3、個位與十位的兩位數相減
口訣:(被減數十位-被減數個位)X9
如:43-34=9用口訣計算:(4-3)X9=9
95-59=36用口訣計算:(9-5)X9=36
大家可以試著計算76-67,53-35,42-24

❸ 求速算技巧

速算技巧:列式,當數據較大時,運算難度大,把a、b都看成兩位數,進行兩位數乘法,在選項一定的情況下,可以保證精度。兩位數乘速算時,遵循口算速演算法則,可以很快得答案。

1、比較多個分數時,在量級相當的情況下,首位最大/小的數為最大/小數;

2、計算一個分數時,在選項首位不同的情況下,通過計算首位便可選出正確答案。

3、某些比較復雜的分數,需要計算分數的「倒數」的首位來判定答案。

4、在乘法或者除法中使用」截位法「時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定。

(3)很快能算出來的計算方法擴展閱讀:

注意事項

1、兩個分數作比較時,若其中一個分數的分子與分母都比另外一個分數的分子與分母分別僅僅大一點,這時候使用「直除法」、「化同法」經常很難比較出大小關系,而使用「差分法」卻可以很好地解決這樣的問題。

2、在滿足「適用形式」的兩個分數中,我們定義分子與分母都比較大的分數叫「大分數」,分子與分母都比較小的分數叫「小分數」,而這兩個分數的分子、分母分別做差得到的新的分數我們定義為「差分數」。

❹ 口算速算的方法

1.速算之湊整先算。
【點撥】:加法、減法的簡便計算中,基本思路是「湊整」,根據加法(乘法)的交換律、結合律以及減法的性質,其中若有能夠湊整的,可以變更算式,使能湊整的數結成一對好朋友,進行湊整計算,能使計算簡便。

例:298+304+196+502

【分析】:本題可以運用加法交換律和結合律,把能夠湊成整十、整百、整千……的數先加起來,可以使計算簡便。

【解答】:原式=(298+502)+(304+196)=800+500=1300

2.速算之帶符號搬家。
【點撥】:在加減混合,乘除混合同級運算中,可以根據運算的需要以及題目的特點,交換數字的位置,可以使計算變得簡便。特別提醒的是:交換數字的位置,要注意運算符號也隨之換位置。

例:464-545+836-455

【分析】:觀察例題我們會發現,如果按照慣例應該從左往右計算,464減545根本就不夠減,在小學階段,學生沒辦法做,所以要想做這道題,學生必須先觀察數字特點,進行簡便計算。

思考:4.75÷0.25-4.75能帶符號搬家嗎?什麼情況下才能帶符號搬家?帶符號搬家需要注意什麼?

3.速算之拆數湊整。
【點撥】:根據運算定律和數字特點,常常靈活地把算式中的數拆分,重新組合,分別湊成整十、整百、整千。

例:998+1413+9989

【分析】:給998添上2能湊成1000,給9989添上11湊成10000,所以就把1413分成1400、2與11三個數的和。

【解答】:
原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400

例:73.15×9.9

【分析】:把9.9看作10減0.1的差,然後用乘法分配率可簡化運算。

【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185

4.速算之等值變化。
【點撥】:等值變化是小學數學中重要的思想方法。做加法時候,常常利用這樣的恆等變形:一個加數增加,另一個加數就要減少同一個數,它們的和才不變。而減法中,是被減數和減數同時增加或減少相同的數,差才不變。
例:1234-798

【分析】:把798看作800,減去800後,再在所得差里加上多減去的2.

【解答】:原式==1234-800+2=436。

5.速算之去括弧法。
【點撥】:在加減混合運算中,括弧前面是「加號或乘號」,則去括弧時,括弧里的運算符號不變;如果括弧前面是「減號或除號」,則去括弧時,括弧里的運算符號都要改變。

例題:(4.8×7.5×8.1)÷(2.4×2.5×2.7)

【分析】:首先根據「去括弧原則」把括弧去掉,然後根據「在同級運算中每個數可帶著它前邊的符號『搬家』」進行簡算。

【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18

6.速算之同尾先減。
【點撥】:在減法計算時,若減數和被減數的尾數相同,先用被減數減去尾數相同的減數,能使計算簡便。

【分析】:算式中第二個減數256與被減數2356的尾數相同,可以交換兩個數的位置,讓2356先減256

7.速算之提取公因數
【點撥】:乘法分配率的反應用,出錯率比較高,一般包括三種類型。

❺ 口算有什麼快速方法

1、十位數是1的兩位數相乘

乘數的個位與被乘數相加,得數為前積,乘數的個位與被乘數的個位相乘,得數為後積,滿十前一。

2、個位是1的兩位數相乘    

十位與十位相乘,得數為前積,十位與十位相加,得數接著寫,滿十進一,在最後添上1。 

3、十位相同個位不同的兩位數相乘    

被乘數加上乘數個位,和與十位數整數相乘,積作為前積,個位數與個位數相乘作為後積加上去。

4、首位相同,兩尾數和等於10的兩位數相乘     

十位數加1,得出的和與十位數相乘,得數為前積,個位數相乘,得數為後積,沒有十位用0補。

5、首位相同,尾數和不等於10的兩位數相乘    

兩首位相乘(即求首位的平方),得數作為前積,兩尾數的和與首位相乘,得數作為中積,滿十進一,兩尾數相乘,得數作為後積。

❻ 請問一下在數學裡面有一種算數很快的方法是哪一種呢

由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。

這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:

⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上
誠心為您回答,希望可以幫助到您,贈人玫瑰,手有餘香,非常感謝,有用的話,給個好評吧O(∩_∩)O~

❼ 速算方法和技巧

第一步:整體觀察,若有線性趨勢則走思路A,若沒有線性趨勢或線性趨勢不明顯則走思路B。*
*註:線性趨勢是指數列總體上往一個方向發展,即數值越來越大,或越來越小,且直觀上數值的大小變化跟項數本身有直接關聯(別覺得太玄乎,其實大家做過一些題後都能有這個直覺 )

第二步思路A:分析趨勢
1, 增幅(包括減幅)一般做加減。
基本方法是做差,但如果做差超過三級仍找不到規律,立即轉換思路,因為公考沒有考過三級以上的等差數列及其變式。
例1:-8,15,39,65,94,128,170,()
A.180 B.210 C. 225 D 256
解:觀察呈線性規律,數值逐漸增大,且增幅一般,考慮做差,得出差23,24,26,29,34,42,再度形成一個增幅很小的線性數列,再做差得出1,2,3,5,8,很明顯的一個和遞推數列,下一項是5+8=13,因而二級差數列的下一項是42+13=55,因此一級數列的下一項是170+55=225,選C。
總結:做差不會超過三級;一些典型的數列要熟記在心

2, 增幅較大做乘除
例2:0.25,0.25,0.5,2,16,()
A.32 B. 64 C.128 D.256
解:觀察呈線性規律,從0.25增到16,增幅較大考慮做乘除,後項除以前項得出1,2,4,8,典型的等比數列,二級數列下一項是8*2=16,因此原數列下一項是16*16=256
總結:做商也不會超過三級

3, 增幅很大考慮冪次數列
例3:2,5,28,257,()
A.2006 B。1342 C。3503 D。3126
解:觀察呈線性規律,增幅很大,考慮冪次數列,最大數規律較明顯是該題的突破口,注意到257附近有冪次數256,同理28附近有27、25,5附近有4、8,2附近有1、4。而數列的每一項必與其項數有關,所以與原數列相關的冪次數列應是1,4,27,256(原數列各項加1所得)即1^1,2^2,3^3,4^4,下一項應該是5^5,即3125,所以選D
總結:對冪次數要熟悉

第二步思路B:尋找視覺沖擊點*
*註:視覺沖擊點是指數列中存在著的相對特殊、與眾不同的現象,這些現象往往是解題思路的導引
視覺沖擊點1:長數列,項數在6項以上。基本解題思路是分組或隔項。
例4:1,2,7,13,49,24,343,()
A.35 B。69 C。114 D。238
解:觀察前6項相對較小,第七項突然變大,不成線性規律,考慮思路B。長數列考慮分組或隔項,嘗試隔項得兩個數列1,7,49,343;2,13,24,()。明顯各成規律,第一個支數列是等比數列,第二個支數列是公差為11的等差數列,很快得出答案A。
總結:將等差和等比數列隔項雜糅是常見的考法。

視覺沖擊點2:搖擺數列,數值忽大忽小,呈搖擺狀。基本解題思路是隔項。
20 5
例5:64,24,44,34,39,()
10
A.20 B。32 C 36.5 D。19
解:觀察數值忽小忽大,馬上隔項觀察,做差如上,發現差成為一個等比數列,下一項差應為5/2=2.5,易得出答案為36.5
總結:隔項取數不一定各成規律,也有可能如此題一樣綜合形成規律。

視覺沖擊點3:雙括弧。一定是隔項成規律!
例6:1,3,3,5,7,9,13,15,(),()
A.19,21 B。19,23 C。21,23 D。27,30
解:看見雙括弧直接隔項找規律,有1,3,7,13,();3,5,9,15,(),很明顯都是公差為2的二級等差數列,易得答案21,23,選C

例7:0,9,5,29,8,67,17,(),()
A.125,3 B。129,24 C。84,24 D。172,83
解:注意到是搖擺數列且有雙括弧,義無反顧地隔項找規律!有0,5,8,17,();9,29,67,()。支數列二數值較大,規律較易顯現,注意到增幅較大,考慮乘除或冪次數列,腦中閃過8,27,64,發現支數列二是2^3+1,3^3+2,4^3+3的變式,下一項應是5^3+4=129。直接選B。回頭再看會發現支數列一可以還原成1-1,4+1,9-1,16+1,25-1.
總結:雙括弧隔項找規律一般只確定支數列其一即可,為節省時間,另一支數列可以忽略不計

視覺沖擊點4:分式。
類型(1):整數和分數混搭,提示做乘除。
例8:1200,200,40,(),10/3
A.10 B。20 C。30 D。5
解:整數和分數混搭,馬上聯想做商,很易得出答案為10

類型(2):全分數。解題思路為:能約分的先約分;能劃一的先劃一;突破口在於不宜變化的分數,稱作基準數;分子或分母跟項數必有關系。
例9:3/15,1/3,3/7,1/2,()
A.5/8 B。4/9 C。15/27 D。-3
解:能約分的先約分3/15=1/5;分母的公倍數比較大,不適合劃一;突破口為3/7,因為分母較大,不宜再做乘積,因此以其作為基準數,其他分數圍繞它變化;再找項數的關系3/7的分子正好是它的項數,1/5的分子也正好它的項數,於是很快發現分數列可以轉化為1/5,2/6,3/7,4/8,下一項是5/9,即15/27

例10:-4/9,10/9,4/3,7/9,1/9
A.7/3 B 10/9 C -5/18 D -2
解:沒有可約分的;但是分母可以劃一,取出分子數列有-4,10,12,7,1,後項減前項得
14,2,-5,-6,(-3.5),(-0.5)與分子數列比較可知下一項應是7/(-2)=-3.5,所以分子數列下一項是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18

視覺沖擊點5:正負交疊。基本思路是做商。
例11:8/9, -2/3, 1/2, -3/8,()
A 9/32 B 5/72 C 8/32 D 9/23
解:正負交疊,立馬做商,發現是一個等比數列,易得出A

視覺沖擊點6:根式。
類型(1)數列中出現根數和整數混搭,基本思路是將整數化為根數,將根號外數字移進根號內
例12:0 3 1 6 √2 12 ( ) ( ) 2 48
A. √3 24 B.√3 36 C.2 24 D.2 36
解:雙括弧先隔項有0,1,√2,(),2;3,6,12,(),48.支數列一即是根數和整數混搭類型,以√2為基準數,其他數圍繞它變形,將整數劃一為根數有√0 √1 √2 ()√4,易知應填入√3;支數列二是明顯的公比為2的等比數列,因此答案為A

類型(2)根數的加減式,基本思路是運用平方差公式:a^2-b^2=(a+b)(a-b)
例13:√2-1,1/(√3+1),1/3,()
A(√5-1)/4 B 2 C 1/(√5-1) D √3
解:形式劃一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),這是根式加減式的基本變形形式,要考就這么考。同時,1/3=1/(1+2)=1/(1+√4),因此,易知下一項是1/(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.

視覺沖擊點7:首一項或首兩項較小且接近,第二項或第三項突然數值變大。基本思路是分組遞推,用首一項或首兩項進行五則運算(包括乘方)得到下一個數。
例14:2,3,13,175,()
A.30625 B。30651 C。30759 D。30952
解:觀察,2,3很接近,13突然變大,考慮用2,3計算得出13有2*5+3=3,也有3^2+2*2=13等等,為使3,13,175也成規律,顯然為13^2+3*2=175,所以下一項是175^2+13*2=30651
總結:有時遞推運算規則很難找,但不要動搖,一般這類題目的規律就是如此。

視覺沖擊點8:純小數數列,即數列各項都是小數。基本思路是將整數部分和小數部分分開考慮,或者各成單獨的數列或者共同成規律。

例15:1.01,1.02,2.03,3.05,5.08,()
A.8.13 B。 8.013 C。7.12 D 7.012
解:將整數部分抽取出來有1,1,2,3,5,(),是一個明顯的和遞推數列,下一項是8,排除C、D;將小數部分抽取出來有1,2,3,5,8,()又是一個和遞推數列,下一項是13,所以選A。
總結:該題屬於整數、小數部分各成獨立規律

例16:0.1,1.2,3.5,8.13,( )
A 21.34 B 21.17 C 11.34 D 11.17
解:仍然是將整數部分與小數部分拆分開來考慮,但在觀察數列整體特徵的時候,發現數字非常像一個典型的和遞推數列,於是考慮將整數和小樹部分綜合起來考慮,發現有新數列0,1,1,2,3,5,8,13,(),(),顯然下兩個數是8+13=21,13+21=34,選A
總結:該題屬於整數和小數部分共同成規律

視覺沖擊點9:很像連續自然數列而又不連貫的數列,考慮質數或合數列。
例17:1,5,11,19,28,(),50
A.29 B。38 C。47 D。49
解:觀察數值逐漸增大呈線性,且增幅一般,考慮作差得4,6,8,9,……,很像連續自然數列而又缺少5、7,聯想和數列,接下來應該是10、12,代入求證28+10=38,38+12=50,正好契合,說明思路正確,答案為38.

視覺沖擊點10:大自然數,數列中出現3位以上的自然數。因為數列題運算強度不大,不太可能用大自然數做運算,因而這類題目一般都是考察微觀數字結構。
例18:763951,59367,7695,967,()
A.5936 B。69 C。769 D。76
解:發現出現大自然數,進行運算不太現實,微觀地考察數字結構,發現後項分別比前項都少一位數,且少的是1,3,5,下一個預設的數應該是7;另外預設一位數後,數字順序也進行顛倒,所以967去除7以後再顛倒應該是69,選B。

例19:1807,2716,3625,()
A.5149 B。4534 C。4231 D。5847
解:四位大自然數,直接微觀地看各數字關系,發現每個四位數的首兩位和為9,後兩位和為7,觀察選項,很快得出選B。

第三步:另闢蹊徑。
一般來說完成了上兩步,大多數類型的題目都能找到思路了,可是也不排除有些規律不容易直接找出來,此時若把原數列稍微變化一下形式,可能更易看出規律。

變形一:約去公因數。數列各項數值較大,且有公約數,可先約去公約數,轉化成一個新數列,找到規律後再還原回去。
例20:0,6,24,60,120,()
A.186 B。210 C。220 D。226
解:該數列因各項數值較大,因而拿不準增幅是大是小,但發現有公約數6,約去後得0,1,4,10,20,易發現增幅一般,考慮做加減,很容易發現是一個二級等差數列,下一項應是20+10+5=35,還原乘以6得210。

變形二:因式分解法。數列各項並沒有共同的約數,但相鄰項有共同的約數,此時將原數列各數因式分解,可幫助找到規律。
例21:2,12,36,80,()
A.100 B。125 C 150 D。175
解:因式分解各項有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加變化把形式統一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一項應該是5*5*6=150,選C。

變形三:通分法。適用於分數列各項的分母有不大的最小公倍數。
例22:1/6,2/3,3/2,8/3,()
A.10/3 B.25/6 C.5 D.35/6
解:發現分母通分簡單,馬上通分去掉分母得到一個單獨的分子數列1,4,9,16,()。增幅一般,先做差的3,5,7,下一項應該是16+9=25。還原成分母為6的分數即為B。

第四步:蒙猜法,不是辦法的辦法。
有些題目就是百思不得其解,有的時候就剩那麼一兩分鍾,那麼是不是放棄呢?當然不能!一分萬金啊,有的放矢地蒙猜往往可以救急,正確率也不低。下面介紹幾種我自己琢磨的蒙猜法。
第一蒙:選項里有整數也有小數,小數多半是答案。
見例5:64,24,44,34,39,()

A.20 B。32 C 36.5 D。19
直接猜C!

例23:2,2,6,12,27,()
A.42 B 50 C 58.5 D 63.5
猜:發現選項有整數有小數,直接在C、D里選擇,出現「.5」的小數說明運算中可能有乘除關系,觀察數列中後項除以前項不超過3倍,猜C
正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原數列下一項是27+31.5=58.5

第二蒙:數列中出現負數,選項中又出現負數,負數多半是答案。
例24:-4/9,10/9,4/3,7/9,1/9,( )
A.7/3 B.10/9 C -5/18 D.-2
猜:數列中出現負數,選項中也出現負數,在C/D兩個裡面猜,而觀察原數列,分母應該與9有關,猜C。

第三蒙:猜最接近值。有時候貌似找到點規律,算出來的答案卻不在選項中,但又跟某一選項很接近,別再浪費時間另找規律了,直接猜那個最接近的項,八九不離十!
例25:1,2,6,16,44,()
A.66 B。84 C。88 D。120
猜:增幅一般,下意識地做了差有1,4,10,28。再做差3,6,18,下一項或許是(6+18)*2=42,或許是6*18=108,不論是哪個,原數列的下一項都大於100,直接猜D。

例26:0.,0,1,5,23,()
A.119 B。79 C 63 D 47
猜:首兩項一樣,明顯是一個遞推數列,而從1,5遞推到25必然要用乘法,而5*23=115,猜最接近的選項119

第四蒙:利用選項之間的關系蒙。
例27:0,9,5,29,8,67,17,(),()
A.125,3 B129,24 C 84,24 D172 83
猜:首先注意到B,C選項中有共同的數值24,立馬會心一笑^_^,知道這是陰險的出題人故意設置的障礙,而又恰恰是給我們的線索,第二個括弧一定是24!而根據之前總結的規律,雙括弧一定是隔項成規律,我們發現偶數項9,29,67,()後項都是前項的兩倍左右,所以猜129,選B

例28:0,3,1,6,√2,12,(),(),2,48
A.√3,24 B。√3,36 C 2,24 D√2,36
猜:同上題理,第一個括弧肯定是√3!而雙括弧隔項成規律,3,6,12,易知第二個括弧是24,很快選出A

好了 希望大家都能理解並熟練運用這些方法,加快解題速度,提高正確率!加油!!!
這裡面當然不可能包含所有的方法,因為題是無窮的,歡迎大家踴躍分享更多好方法~

PS:網上找到的:十 大 速 算 技 巧

★【速算技巧一:估演算法】

要點:
"估演算法"毫無疑問是資料分析題當中的速算第一法,在所有計算進行之前必須考慮能否先行估算。所謂估算,是在精度要求並不太高的情況下,進行粗略估值的速算方式,一般在選項相差較大,或者在被比較數據相差較大的情況下使用。估算的方式多樣,需要各位考生在實戰中多加訓練與掌握。
進行估算的前提是選項或者待比較的數字相差必須比較大,並且這個差別的大小決定了"估算"時候的精度要求。

★ 【速算技巧二:直除法】

要點:
"直除法"是指在比較或者計算較復雜分數時,通過"直接相除"的方式得到商的首位(首一位或首兩位),從而得出正確答案的速算方式。"直除法"在資料分析的速算當中有非常廣泛的用途,並且由於其"方式簡單"而具有"極易操作"性。
"直除法"從題型上一般包括兩種形式:

一、 比較多個分數時,在量級相當的情況下,首位最大/小的數為最大/小數;
二、 計算一個分數時,在選項首位不同的情況下,通過計算首位便可選出正確答案

"直除法"從難度深淺上來講一般分為三種梯度:

一、 簡單直接能看出商的首位;
二、 通過動手計算能看出商的首位;
三、 某些比較復雜的分數,需要計算分數的"倒數"的首位來判定答案。

★【速算技巧三:截位法】

要點:
所謂"截位法",是指"在精度允許的范圍內,將計算過程當中的數字截位(即只看或者只取前幾位),從而得到精度足夠的計算結果"的速算方式。
在加法或者減法中使用"截位法"時,直接從左邊高位開始相加或者相減(同時注意下一位是否需要進位與借位),直到得到選項要求精度的答案為止。
在乘法或者除法中使用"截位法"時,為了使所得結果盡可能精確,需要注意截位近似的方向:
一、 擴大(或縮小)一個乘數因子,則需縮小(或擴大)另一個乘數因子;
二、 擴大(或縮小)被除數,則需擴大(或縮小)除數。 如果是求"兩個乘積的和或者差(即a×b±c×d)",應該注意:三、 擴大(或縮小)加號的一側,則需縮小(或擴大)加號的另一側;
四、 擴大(或縮小)減號的一側,則需擴大(或縮小)減號的另一側。

到底採取哪個近似方向由相近程度和截位後計算難度決定。

一般說來,在乘法或者除法中使用"截位法"時,若答案需要有N位精度,則計算過程的數據需要有N+1位的精度,但具體情況還得由截位時誤差的大小以及誤差的抵消情況來決定;在誤差較小的情況下,計算過程中的數據甚至可以不滿足上述截位方向的要求。所以應用這種方法時,需要考生在做題當中多加熟悉與訓練誤差的把握,在可以使用其它方式得到答案並且截位誤差可能很大時,盡量避免使用乘法與除法的截位法。

★【速算技巧四:化同法】

要點:
所謂"化同法",是指"在比較兩個分數大小時,將這兩個分數的分子或分母化為相同或相近,從而達到簡化計算"的速算方式。一般包括三個層次:
一、 將分子(或分母)化為完全相同,從而只需要再看分母(或分子)即可;
二、 將分子(或分母)化為相近之後,出現"某一個分數的分母較大而分子較小"或"某一個分數的分母較小而分子較大"的情況,則可直接判斷兩個分數的大小。
三、 將分子(或分母)化為非常接近之後,再利用其它速算技巧進行簡單判定。
事實上在資料分析試題當中,將分子(或分母)化為完全相同一般是不可能達到的,所以化同法更多的是"化為相近"而非"化為相同"。

★【速算技巧五:差分法】

要點:
"差分法"是在比較兩個分數大小時,用"直除法"或者"化同法"等其它速算方式難以解決時可以採取的一種速算方式。

適用形式:

兩個分數做比較時,若其中一個分數的分子與分母都比另外一個分數的分子與分母分別僅僅大一點,這時候使用"直除法"、"化同法"經常很難比較出大小關系,而使用"差分法"卻可以很好的解決這樣的問題。

基礎定義:

在滿足"適用形式"的兩個分數中,我們定義分子與分母都比較大的分數叫"大分數",分子與分母都比較小的分數叫"小分數",而這兩個分數的分子、分母分別做差得到的新的分數我們定義為"差分數"。例如:324/53.1與313/51.7比較大小,其中324/53.1就是"大分數",313/51.7就是"小分數",而(324-313)/(53.1-51.7)=11/1.4就是"差分數"。

"差分法"使用基本准則------

"差分數"代替"大分數"與"小分數"作比較:

1、 若差分數比小分數大,則大分數比小分數大;
2、 若差分數比小分數小,則大分數比小分數小;
3、 若差分數與小分數相等,則大分數與小分數相等。

比如上文中就是"11/1.4代替324/53.1與313/51.7作比較",因為11/1.4>313/51.7(可以通過"直除法"或者"化同法"簡單得到),所以324/53.1>313/51.7。

特別注意:

一、"差分法"本身是一種"精演算法"而非"估演算法",得出來的大小關系是精確的關系而非粗略的關系;

二、"差分法"與"化同法"經常聯系在一起使用,"化同法緊接差分法"與"差分法緊接化同法"是資料分析速算當中經常遇到的兩種情形。

三、"差分法"得到"差分數"與"小分數"做比較的時候,還經常需要用到"直除法"。

四、如果兩個分數相隔非常近,我們甚至需要反復運用兩次"差分法",這種情況相對比較復雜,但如果運用熟練,同樣可以大幅度簡化計算。

★【速算技巧六:插值法】

要點:
"插值法"是指在計算數值或者比較數大小的時候,運用一個中間值進行"參照比較"的速算方式,一般情況下包括兩種基本形式:

一、在比較兩個數大小時,直接比較相對困難,但這兩個數中間明顯插了一個可以進行參照比較並且易於計算的數,由此中間數可以迅速得出這兩個數的大小關系。比如說A與B的比較,如果可以找到一個數C,並且容易得到A>C,而B<C,即可以判定A>B。

二、在計算一個數值f的時候,選項給出兩個較近的數A與B難以判斷,但我們可以容易的找到A與B之間的一個數C,比如說A<C<B,並且我們可以判斷f>C,則我們知道f=B(另外一種情況類比可得)。

★【速算技巧七:湊整法】

要點:
"湊整法"是指在計算過程當中,將中間結果湊成一個"整數"(整百、整千等其它方便計算形式的數),從而簡化計算的速算方式。"湊整法"包括加/減法的湊整,也包括乘/除法的湊整。

在資料分析的計算當中,真正意義上的完全湊成"整數"基本上是不可能的,但由於資料分析不要求絕對的精度,所以湊成與"整數"相近的數是資料分析"湊整法"所真正包括的主要內容。

★【速算技巧八:放縮法】

要點:
"放縮法"是指在數字的比較計算當中,如果精度要求並不高,我們可以將中間結果進行大膽的"放"(擴大)或者"縮"(縮小),從而迅速得到待比較數字大小關系的速算方式。

要點:

若A>B>0,且C>D>0,則有:
1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C

這四個關系式即上述四個例子所想要闡述的四個數學不等關系,是我們在做題當中經常需要用到的非常簡單、非常基礎的不等關系,但卻是考生容易忽略,或者在考場之上容易漏掉的數學關系,其本質可以用"放縮法"來解釋。

★【速算技巧九:增長率相關速演算法】

要點:
計算與增長率相關的數據是做資料分析題當中經常遇到的題型,而這類計算有一些常用的速算技巧,掌握這些速算技巧對於迅速解答資料分析題有著非常重要的輔助作用。

兩年混合增長率公式:
如果第二期與第三期增長率分別為r1與r2,那麼第三期相對於第一期的增長率為:
r1+r2+r1× r2

增長率化除為乘近似公式:
如果第二期的值為A,增長率為r,則第一期的值A':
A'= A/(1+r)≈A×(1-r)
(實際上左式略大於右式,r越小,則誤差越小,誤差量級為r^2)

平均增長率近似公式:
如果N年間的增長率分別為r1、r2、r3……rn,則平均增長率:r≈上述各個數的算術平均數
(實際上左式略小於右式,增長率越接近,誤差越小)

求平均增長率時特別注意問題的表述方式,例如:
1、"從2004年到2007年的平均增長率"一般表示不包括2004年的增長率;
2、"2004、2005、2006、2007年的平均增長率"一般表示包括2004年的增長率。

"分子分母同時擴大/縮小型分數"變化趨勢判定:
1、A/B中若A與B同時擴大,則①若A增長率大,則A/B擴大②若B增長率大,則A/B縮小;A/B中若A與B同時縮小,則①若A減少得快,則A/B縮小②若B減少得快,則A/B擴大。
2、A/(A+B)中若A與B同時擴大,則①若A增長率大,則A/(A+B)擴大②若B增長率大,則A/(A+B)縮小;A/(A+B)中若A與B同時縮小,則①若A減少得快,則A/(A+B)縮小②若B減少得快,則A/(A+B)擴大。

多部分平均增長率:
如果量A與量B構成總量"A+B",量A增長率為a,量B增長率為b,量"A+B"的增長率為r,則A/B=(r-b)/(a-r),一般用"十字交叉法"來簡單計算。
注意幾點問題:
1、 r一定是介於a、b之間的,"十字交叉"相減的時候,一個r在前,另一個r在後;
2、 算出來的比例是未增長之前的比例,如果要計算增長之後的比例,應該在這個比例上再乘以各自的增長率。

等速率增長結論:
如果某一個量按照一個固定的速率增長,那麼其增長量將越來越大,並且這個量的數值成"等比數列",中間一項的平方等於兩邊兩項的乘積。

★【速算技巧十:綜合速演算法】

要點:
"綜合速演算法"包含了我們資料分析試題當中眾多體系性不如前面九大速算技巧的速算方式,但這些速算方式仍然是提高計算速度的有效手段。

平方數速算:
牢記常用平方數,特別是11-30以內數的平方,可以很好提高計算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900

尾數法速算:
因為資料分析試題當中牽涉到的數據幾乎都是通過近似後得到的結果,所以一般我們計算的時候多強調首位估算,而尾數往往是微不足道的。因此資料分析當中的尾數法只適用於未經近似或者不需要近似的計算之中。歷史數據證明,國考試題資料分析基本上不能用到尾數法,但在地方考題的資料分析當中,尾數法仍然可以有效的簡化計算。

錯位相加/減:
A×9型速算技巧: A×9= A×10- A; 如:743×9=7430-743=6687
A×9.9型速算技巧: A×9.9= A×10+A÷10; 如:743×9.9=7430-74.3=7355.7
A×11型速算技巧: A×11= A×10+A; 如:743×11=7430+743=8173
A×101型速算技巧: A×101= A×100+A; 如:743×101=74300+743=75043

乘/除以5、25、125的速算技巧:
A× 5型速算技巧:A×5= 10A÷2; A÷ 5型速算技巧:A÷5= 0.1A×2
例 8739.45×5=87394.5÷2=43697.25
36.843÷5=3.6843×2=7.3686
A× 25型速算技巧:A×25= 100A÷4; A÷ 25型速算技巧:A÷25= 0.01A×4
例 7234×25=723400÷4=180850
3714÷25=37.14×4=148.56
A×125型速算技巧:A×125= 1000A÷8; A÷125型速算技巧:A÷125= 0.001A×8
例 8736×125=8736000÷8=1092000
4115÷125=4.115×8=32.92

減半相加:
A×1.5型速算技巧: A×1.5= A+A÷2;
例 3406×1.5=3406+3406÷2=3406+1703=5109

"首數相同尾數互補"型兩數乘積速算技巧:
積的頭=頭×(頭+1);積的尾=尾×尾

❽ 怎樣計算快點呢

要快速計算加減法時,需要有很好的計算方法. 在快速計算加法的時候,要動動腦,像:348+95=348+100-5=448-5=443.這樣的快速方法,用一句話來說就是「多加要減去」. 還有一種快速的加法是:392+103=392+100+3=492+3=495,這個快速計算的方法,要用一句話來說,就是「少加要加上」. 快速計算減法,也需要有方法,像:648-98=648-100+2=548+2=550.這樣的加法計算,可以用一句話來說,就是「多減要加上」. 還有最後一種快速計算,是610-104=610-100-4=510-4=506,這是最後一種快速計算方法,用一句話來說,就是,「少減要減去」. 多減要加上;少減要減去;多加要減去;少加要加上.這四句話就是快速計算加減法的最好方法.

❾ 什麼樣的口算方法又快又准

印度的九九乘法表是從1 背到19(→19×19乘法? ),
不過您知道印度人是怎麼記 11到19 的數字嗎?
我是看了下面這本書之後才恍然大悟的。 「印度式計算訓練」 2007年 6月 10日第一版第 6 刷發行株式會社晉游社發售。該書介紹了加減乘除的各種快速計算方法。不過在這里我只介紹印度的九九乘法。因為實在太神奇了!!下面的數字跟說明都是引用該書P.44 的例子。
請試著用心算算出下面的答案:
13 X 12 = ?
( 被乘數) (乘數 )
印度人是這樣算的。
****************************************************************************
第一步:
先把(13)跟乘數的個位數 (2)加起來
13 + 2 = 15
第二步:
然後把第一步的答案乘以10(→也就是說後面加個 0 )
第三步:
再把被乘數的個位數(3)乘以乘數的個位數 (2)
2 X 3 = 6
(13+2)x10 + 6 = 156
****************************************************************************
就這樣,用心算就可以很快地算出11X11 到19X19了喔。這真是太神奇了!
我們試著演算一下
14×13:
(1)14+3=17
(2)17×10=170
(3)4×3=12
(4)170+12=182
16×17:
(1)16+7=23
(2)23×10=230
(3)6×7=42
(4)230+42=272
真的是耶,好簡單喔 !
怎不早點讓我知道呢 ?

有趣的是善舞銀蛇還發現此演算法只要對第二步稍作改變,就能演算19×19乘法以上的十位數相同的任意十位數,(第二步:把第一步的答案乘以10,改變為乘以被乘數和乘數相同的十位數。)此演算如被乘數和乘數的十位數不相同則不成立。
更有趣的是只要被乘數和乘教的十位數以上的數都相同,就能用同樣方法演算。

我們試著演算一下
23 X 22 = ?
( 被乘數) (乘數 )
第一步:
先把(23)跟乘數的個位數 (2)加起來
23 + 2 = 25
第二步:
然後把第一步的答案乘以20(→也就是說後面加個 0 )
第三步:
再把被乘數的個位數(3)乘以乘數的個位數 (2)
2 X 3 = 6
(23+2)x20 + 6 = 506

我們試著再演算一下
54×53:
(1)54+3=57
(2)57×50=2850
(3)4×3=12
(4)2850+12=2862
76×77:
(1)76+7=83
(2)83×70=5810
(3)6×7=42
(4)5810+42=5852
854×853
(1)854+3=857
(2 )857×850=728450
(3)4×3=12
(4)728450+12=728462

❿ 小學快速算術的方法

小學快速算術的方法

小學快速算術的方法,只要熟練掌握計演算法則和運算順序,化繁為簡,化難為易,就能算得又快又准確。掌握簡便演算法可以給孩子大大節省時間,下面來看看小學快速算術的方法。

小學快速算術的方法1

低年級組

1. 加數「湊整」

幾個數相加,如果有幾個數相加能湊成整十的數,可以調換加數的位置,把幾個數相加。

例:

14+5+6

=14+6+5

=25

2. 運用減法性質「湊整」

從一個數里連續減去幾個數,如果減數的和能湊成整十的數,可以把減數先加後再減。這種口算比較簡便。

例:

50-13-7

=50-(13+7)

=50-20

=30

3. 近十、近百、近千的數

計算時可以把接近整十、整百、整千……的數看作整十、整百、整千……的數進行解答。

例:

(1)497+136

497可以近似的看成500,

原式

=(500-3)+136

=500+136-3

=633

(2)760+102

將102看成100+2

原式

=760+100+2

=860+2

=862

4. 補數法

利用"補數法",將每個加數加1後湊成20000、2000、200、20進行計算。

例:

19999+1999+199+19

可以看成:

(20000-1)+(2000-1)+(200-1)+(20-1)

=20000+2000+200+20-4

=22220-4

=22216

5. 利用加減法交換律:

先加再減的題目也可以做成先減再加。

例:

562+316-62

=562-62+316

=500+316

=816

6. 整百數和「零頭數」

在計算時可以先把題中的數看成兩部分:整百數和"零頭數",然後把整百數與整百數相加減,"零頭數"與"零頭數"相加減。

例:

598+31-296-103

=500+98+31-200-96-100-3

=500-200-100+98-96+31-3

=200+2+28

=230

中年級組

1. 帶符號搬家法

當一個計算題只有同一級運算(只有乘除或只有加減運算)又沒有括弧時,我們可以「帶符號搬家」。

例如:

23-11+7=23+7-11

4×14×5=4×5×14

10÷8×4=10×4÷8

2. 結合律法

加括弧法

(1)在加減運算中添括弧時,括弧前是加號,括弧里不變號,括弧前是減號,括弧里要變號。

例如:

23+19-9=23+(19-9)

33-6-4=33-(6+4)

(2)在乘除運算中添括弧時,括弧前是乘號,括弧里不變號,括弧前是除號,括弧里要變號。

例如:

2×6÷3=2×(6÷3)

10÷2÷5=10÷(2×5)

去括弧法

(1)在加減運算中去括弧時,括弧前是加號,去掉括弧不變號,括弧前是減號,去掉括弧要變號(原來括弧里的加,現在要變為減;原來是減,現在就要變為加)。

例如:

17+(13-7)=17+13-7

23-(13-9)=23-13+9

23-(13+5)=23-13-5

(2)在乘除運算中去括弧時,括弧前是乘號,去掉括弧不變號,括弧前是除號,去掉括弧要變號(原來括弧里的乘,現在就要變為除;原來是除,現在就要變為乘。)

例如:

1×(6÷2)=1×6÷2

24÷(3×2)=24÷3÷2

24÷(6÷3)=24÷6×3

3. 乘法分配律法

分配法

括弧里是加或減運算,與另一個數相乘,注意分配。

例如:

8×(5+11)=8×5+8×11

提取公因式法

注意相同因數的提取。

例如:

9×8+9×2=9×(8+2)

4. 湊整法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦,有借有還,再借不難嘛。

例如:

99+9=(100-1)+(10-1)

5. 拆分法

拆分法就是為了方便計算,把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,4和25,8和125等。分拆還要注意不要改變數的大小哦。

例如:

32×125×25

=4×8×125×25

=(4×25)×(8×125)

=100×1000

小學快速算術的方法2

提取公因式

這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。

注意相同因數的提取。

例如:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

加法結合律

注意對加法結合律

(a+b)+c=a+(b+c)

的運用,通過改變加數的位置來獲得更簡便的運算。

例如:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

拆分法和乘法分配律

這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的.時候,要首先考慮拆分。

例如:

34×9.9 = 34×(10-0.1)

案例再現: 57×101=?

利用基準數

在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。

例如:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

裂項法

分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。

常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。

分數裂項的三大關鍵特徵:

(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。

(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」

(3)分母上幾個因數間的差是一個定值。

小學快速算術的方法3

速算8大技巧

1、個位數是「1」

速算口訣:頭乘頭,頭加頭,尾是1(頭加頭如果超過10要進位)

2、十位數是「1」

速算口訣:頭是1,尾加為,尾乘尾(超過10要進位)

3、個位數都是「9」

速算口訣:頭數各加1 ,相乘再乘10,減去相加數,最後再放1

4、十位數都是9

速算口訣:100減前數,再被後減數。100減大家,結果相互乘,佔2位

5、頭相同,尾互補(尾互補:尾數相加為10)

速算口訣:頭乘頭加1,尾乘尾佔2位

6、頭互補,尾相同

速算口訣:頭乘頭加尾,尾乘尾佔2位

7、互補數乘疊數

速算口訣:頭加1再乘頭,尾乘尾佔2位

8、其中一個是11

速算口訣:首尾都不動,相加放中間

閱讀全文

與很快能算出來的計算方法相關的資料

熱點內容
有什麼方法可以治痛經i 瀏覽:905
檢測尿酸的化學方法 瀏覽:384
金立手機同步在哪裡設置方法 瀏覽:556
你用過哪些記筆記的方法 瀏覽:193
快速套厚被套的簡易方法 瀏覽:783
唐氏綜合征計算方法 瀏覽:672
黑棗如何製作方法 瀏覽:598
有什麼方法可以促排好受孕 瀏覽:518
臨床上常用的哪種方法止血 瀏覽:458
投籃技巧教學方法 瀏覽:664
今天台風如何說明方法 瀏覽:471
如何禁毒最有效的方法 瀏覽:397
水的時間計算方法 瀏覽:803
痘痘的類型和解決方法 瀏覽:631
女裝摩托車儀表安裝方法 瀏覽:29
木折疊門吊輪安裝方法 瀏覽:955
脈法針灸計算方法 瀏覽:685
電腦內存插條使用方法 瀏覽:372
電腦系統快捷鍵設置方法 瀏覽:238
自動化導軌垂直度測量方法 瀏覽:29