導航:首頁 > 計算方法 > 乘除法中的計算方法

乘除法中的計算方法

發布時間:2023-01-14 01:47:13

㈠ 分數乘除法的計算方法

你好,分數乘除法包括分數乘法和分數除法。分數乘法指分數的分子與分子相乘,分母與分母相乘,能約分的要先約分,分子不能和分母乘。 分數除法是用被除數乘上除數的倒數的計算方式,來得出結果。分數乘除法運用乘除法則、倒數來計算。分數乘除法結果要求化為最簡。
一、分數乘法是一種數學運算方法。分數的分子與分子相乘,分母與分母相乘,能約分的要先約分,分子能不能和分母乘。 做第一步時,就要想一個數的分子和另一個數的分母能不能約分。
分數乘法方法如下:

1、 分數乘整數,分母不變,分子乘整數,最後能約分的要約分。

2、 分數乘分數,用分子乘分子,用分母乘分母,最後能約分的要約分。

3、 分數乘整數就是求幾個相同加數的和的簡便運算。一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。

分數乘分數,用分子相乘的積做分子,分母相乘的積做分母。能約分(化簡)的要約分(化簡)。

分數乘分數的公式: a/b×c/d=ac/bd
二、分數除法方法如下:

分數除法法則:分數甲除以分數乙就是分數甲乘以分數乙的倒數。

分數除法的意義:與整數除法的意義相同,都是已知兩個因數的積與其中一個因數求另一個因數。被除數分子乘除數分母,被除數分母乘除數分子。
分數除法是分數乘法的逆行運算。在分數除法中,一個分數除以另一個分數就是乘以這個分數的倒數。當除數小於1,商大於被除數﹔當除數等於1,商等於被除數;當除數大於1,商小於被除數。被除數乘除數的倒數能約分的要約分。

㈡ 二年級乘除法豎式計算怎麼

乘除法豎式計算如下:

除法豎式計算方式:將被除數從高位起的每一位數進行除數運算,每次計算得到的商保留,余數加下一位數進行運算,依此順序將被除數所以位數運算完畢,得到的商按順序組合,余數為最後一次運算結果。

乘法豎式計算方式:首先,用第一個因數分別去乘第二個因數各個數位上的數,從個位乘起,滿十向前一位進一。然後,把所得的積相加。

乘除法計演算法則

1、多位數除法法則整數除法高位起。除數幾位看幾位。

這位不夠看下位,除到哪位商哪位。

余數要比除數小,不夠商一零佔位。

2、商不變的性質被除數、除數同時乘,乘的因數要相同。

被除數、除數同除以,除以的數也相同。

乘、除都把0除外,商不變的性質要記清。

㈢ 分數加減乘除計算公式是什麼

分數加減法計算公式:先通分,然後分母不變,分子相加減。

分數乘法計算公式:分子乘分子,分母乘分母,最後能約分的要約分。

【(3)乘除法中的計算方法擴展閱讀】

一、分數乘除法運演算法則
1、分數乘整數,分母不變,分子乘整數,最後能約分的要約分。
2.分數乘分數,用分子乘分子,用分母乘分母,最後能約分的要約分。
3.分數除以整數,分母不變,如果分子是整數的倍數,則用分子除以整數,最後能約分的要約分。
4.分數除以整數,分母不變,如果分子不是整數的倍數,則用這個分數乘這個整數的倒數,最後能約分的要約分。
5.分數除以分數,等於被除數乘除數的倒數,最後能約分的要約分。
二、分數加減法運演算法則
1、同分母分數相加減,分母不變,即分數單位不變,分子相加減,能約分的要約分。
2.異分母分數相加減,先通分,即運用分數的基本性質將異分母分數轉化為同分母分數,改變其分數單位而大小不變,再按同分母分數相加減法去計算,最後能約分的要約分。

㈣ 乘除怎麼算

乘除怎麼算?
應該是按下列原則來計算:
①只有乘法和除法運算的式子,嚴格的
按順序從左到右去計算,僅僅只是乘法
的可以用交換律、結合律,乘除混合的
必須嚴格的按順序計算。
②乘法和除法對加法和減法可用分配律,
但乘除混合的沒有交換律!
建議你多刷題,熟能生巧要記牢!

㈤ 乘除法四則運算的計算方法是什麼(小數,整數,分數的)

1、整數加、減計演算法則:

1)要把相同數位對齊,再把相同計數單位上的數相加或相減;

2)哪一位滿十就向前一位進。
2、小數加、減法的計演算法則:

1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),

2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點。

(得數的小數部分末尾有0,一般要把0去掉。)
3、分數加、減計演算法則:

1)分母相同時,只把分子相加、減,分母不變;

2)分母不相同時,要先通分成同分母分數再相加、減。
4、整數乘法法則:

1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;

2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
5、小數乘法法則:

1)按整數乘法的法則算出積;

2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點。

3)得數的小數部分末尾有0,一般要把0去掉。
6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分。
7、整數的除法法則

1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數;

2)除到被除數的哪一位,就在那一位上面寫上商;

3)每次除後餘下的數必須比除數小。
8、除數是整數的小數除法法則:

1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;

2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除。
9、除數是小數的小數除法法則:

1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足;

2)然後按照除數是整數的小數除法來除
10、分數的除法法則:

1)用被除數的分子與除數的分母相乘作為分子;

2)用被除數的分母與除數的分子相乘作為分母。
數的范圍
運算名稱
整數
小數
分數
加法
把兩個數合並成一個數的運算。
與整數加法的意義相同。
與整數加法的意義相同。
減法
已知兩個數的和與其中的一個加數,求另一個加數的運算。
與整數減法的意義相同。
與整數減法的意義相同。
乘法
求幾個相同加數的和的簡便運算。
小數乘以整數與整數乘法的意義相同。
一個數乘以小數,就是求這個數的十分之幾、百分之幾……是多少。
分數乘以整數與整數乘法的意義相同。
一個數乘以分數,就是求這個數的幾分之幾是多少。
除法
已知兩個因數的積與其中一個因數,求另一個因數的運算。
與整數除法的意義相同。
與整數除法的意義相同。

㈥ 乘除法公式

乘法公式:因數x因數=積;積÷因數=因數。除法公式:被除數÷除數=商;商x除數=被除數;被除數÷商=除數。乘除法運演算法則:1、同級運算時,從左到右依次計算。2、兩級運算時,先算乘除,後算加減。3、有括弧時,先算括弧裡面的,再算括弧外面的。4、有多層括弧時,先算小括弧里的,再算中括弧裡面的,再算大括弧裡面的,最後算括弧外面的。乘法是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。整數(包括負數)、有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。矩形的區域不取決於首先測量哪一側,這說明了交換屬性。兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。除法是四則運算之一。已知兩個因數的積與其中一個非零因數,求另一個因數的運算叫做除法。兩個數相除又叫做兩個數的比。若ab=c(b≠0),用積數c和因數b來求另一個因數a的運算就是除法,寫作c÷b,讀作c除以b(或b除c)。其中c叫做被除數,b叫做除數,運算的結果a叫做商。

㈦ 乘除法的一些簡便法

一、結合法
一個數連續乘兩個一位數,可根據情況改寫成用這個數乘這兩個數的積的形式,使計算簡便。
例1
計算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在計算時,添加一個小括弧可以使計算簡便。因為括弧前是乘號,所以括弧內不變號。
二、分解法
一個數乘一個兩位數,可根據情況把這個兩位數分解成兩個一位數相乘的形式,再用這個數連續乘兩個一位數,使計算簡便。
例2
計算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
將18分解成2×9的形式,再將括弧去掉,使計算簡便。
三、拆數法
有些題目,如果一步一步地進行計算,比較麻煩,我們可以根據因數及其他數的特徵,靈活運用拆數法進行簡便計算。
例3
計算:99×99+199
(1)在計算時,可以把199寫成99+100的形式,由此得到第一種簡便演算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99寫成100-1的形式,199寫成100+(100-1)的形式,可以得到第二種簡便演算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改數法
有些題目,可以根據情況把其中的某個數進行轉化,創造條件化繁為簡。
例4
計算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48轉化成4×12的形式,使計算簡便。
例5
計算:16×25×25
因為4×25=100,而16=4×4,由此可將兩個4分別與兩個25相乘,即原式可轉化為:(4×25)×(4×25)。
16×25×25
=(4×25)×(4×25)
=100×100
=10000

㈧ 小數乘除法計演算法則

小數乘除法計演算法則:

1、小數的乘法計演算法則:

先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用"0"補足。

2、小數的除法計演算法則:

先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補"0"),然後按照除數是整數的除法法則進行計算。

)。

㈨ 小學的乘除法公式是什麼

乘法:

因數x因數=積

積÷一個因數=另一個因數

除法:

被除數÷除數=商

被除數÷商=除數

商×除數=被除數

乘法的交換律:兩個數相乘,交換兩個因數的位置,積不變,叫做乘法的交換律。a×b=b×a

乘法的結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數,或者,先把後兩個數相乘,再和第一個數相乘,積不變。這叫做乘法結合律。a×b×c=a×(b×c)

乘法分配律:兩個數的和(或差)與一個數相乘,等於把這兩個數分別與這個數相乘,再把兩個積相加(或相減)。這叫做乘法分配律。(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c乘法的其他

拓展資料

小學數學是通過教材,教小朋友們關於數的認識,四則運算,圖形和長度的計算公式,單位轉換一系列的知識,為初中和日常生活的計算打下良好的數學基礎。荷蘭教育家弗賴登諾爾認為:「數學來源於現實,也必須紮根於現實,並且應用於現實。」[1]的確,現代數學要求我們用數學的眼光來觀察世界,用數學的語言來闡述世界。從小學生數學學習心理來看,學生的學習過程不是被動的吸收過程,而是一個以已有知識和經驗為基礎的重新建構的過程,因此,做中學,玩中學,將抽象的數學關系轉化為學生生活中熟悉的事例,將使兒童學得更主動。從我們的教育目標來看,我們在傳授知識的同時,更應注重培養學生的觀察、分析和應用等綜合能力。

(資料來源:網路:小學數學)

閱讀全文

與乘除法中的計算方法相關的資料

熱點內容
小米6屏幕重啟解決方法 瀏覽:436
蘋果7手機設置音樂鈴聲設置在哪裡設置方法 瀏覽:719
鉚釘的安裝方法 瀏覽:754
染頭發怎麼染方法視頻 瀏覽:840
腦袋瓜的食用方法 瀏覽:804
將苦味酊塗在手指上的治療方法是 瀏覽:332
切線方法視頻大全 瀏覽:555
軟燈帶安裝方法圖解 瀏覽:458
廚房的使用方法 瀏覽:526
濰坊青蘿卜種植方法 瀏覽:559
生物分析方法的維護 瀏覽:195
擠領帶方法視頻 瀏覽:753
檢驗員檢測方法 瀏覽:723
有哪些管理方法含有激勵作用 瀏覽:558
分期買車計算方法 瀏覽:153
php魔術方法有哪些 瀏覽:272
輕薄面料製作方法視頻 瀏覽:630
華帝水槽安裝方法 瀏覽:787
足陽明胃經的鍛煉方法 瀏覽:551
提高大腦思維訓練方法 瀏覽:80