A. 三階行列式如何計算
三階行列式計算方法,如圖所示:
性質1行列式與它的轉置行列式相等。
性質2互換行列式的兩行(列),行列式變號。
推論如果行列式有兩行(列)完全相同,則此行列式為零。
性質3行列式的某一行(列)中所有的元素都乘以同一數k,等於用數k乘此行列式。
推論行列式中某一行(列)的所有元素的公因子可以提到行列式符號的外面。
性質4行列式中如果有兩行(列)元素成比例,則此行列式等於零。
性質5把行列式的某一列(行)的各元素乘以同一數然後加到另一列(行)對應的元素上去,行列式不變。
B. 實對稱三階行列式的計算方法是什麼呀
三階行列式可用對角線法則:
D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
實對稱矩陣的行列式計算方法:
1、降階法
根據行列式的特點,利用行列式性質把某行(列)化成只含一個非零元素,然後按該行(列)展開。展開一次,行列式降低一階,對於階數不高的數字行列式本法有效。
2、利用范德蒙行列式
根據行列式的特點,適當變形(利用行列式的性質——如:提取公因式;互換兩行(列);一行乘以適當的數加到另一行(列)去,把所求行列式化成已知的或簡單的形式。其中范德蒙行列式就是一種。這種變形法是計算行列式最常用的方法。
3、綜合法
計算行列式的方法很多,也比較靈活,總的原則是:充分利用所求行列式的特點,運用行列式性質及常用的方法,有時綜合運用以上方法可以更簡便的求出行列式的值;有時也可用多種方法求出行列式的值。
C. 三角行列式計算公式是什麼
三角行列式計算公式為:(-1)^(n(n-1))/2a1na2,n-1...an-1,2an1,三角行列式,無論是上或下,它的行列式里,只有主對角線(右斜順乘)不含零元素,其餘右斜順乘或左斜逆乘的項都有零元素,這些乘積項就都為零了,所以行列式就只是(剩下)主對角線各元素的乘積。
主對角線(從左上角到右下角這條對角線)下方的元素,全為零的行列式稱為上三角行列式,一個n階行列式若能通過變換,化為上三角行列式,則計算該行列式就很容易了。
下三角矩陣:
一個矩陣稱為下三角矩陣如果對角線上方的元素全部為0。類似地,一個矩陣稱為上三角矩陣如果對角線下方的元素全部為0。許多矩陣運算保持下三角性不變:
1、兩個下三角矩陣的和下三角。
2、兩個下三角矩陣的乘積是下三角。
3、一個可逆的下三角矩陣的逆是下三角。
4、下三角矩陣與常數相乘是一個下三角矩陣。以上性質對上三角矩陣也成立。
D. 三階行列式是什麼如何計算
關於三階行列式的計算,首先給出一個實例,A、B、C、D、E、F、G、H、I都是數字。先按斜線計算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH再按斜線計算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF行列式的值就為(AEI+BFG+CDH)-(CEG+DBI+AHF) 然後說一下這個公式。看你不知道行列式是啥玩意,那估計你也不知道行列式的性質,就這個公式而言,主要用到的是把行列式的某一行(列)的任意(非零)倍加到另一行(列)上,行列式的值不變 面積公式是這個樣子,外面的短豎線是絕對值符號,裡面的長豎線是行列式符號,A(X1,Y1),B(X2,Y2),C(X3,Y3)是三個頂點的坐標,按照上面提到性質,公式變為這里把第一行的負一倍分別加到了二三行這個行列式的值其實和是一樣的,這利用的是行列式求值的性質,你可以按照開頭的三階行列式方法計算檢驗。順便提一提,i,j,k分別是X,Y,Z軸的單位向量。上面這個行列式行列式表示的其實是這個1/2 |AB||AC|sinA 這個相當於公式S=1/2 ac sinB,只是換成了角A的夾邊。原因是向量AB和向量AC(向量應該知道吧)的外積就是說到外積,與內積不同的地方是,內積得到的是一個數比如(內積用點乘號)AB · AC = (x2-x1)(x3-x1)+(y2-y1)(y3-y1) 【內積是對應坐標乘積的和】而外積得到的是一個向量比如(外積用叉乘號)AB X AC= 【外積是用行列式計算的】這是一個向量不是一個數,因為i,j,k都是向量他的模應該是|AB X AC| = |AB||AC|sinA 【內積是AB·AC=|AB||AC| cosA】所以前面說短豎線是絕對值不是很准確,其實是向量求模的符號。至此這個公式解說完了。 最後,這個公式是相當的惡心,沒什麼實際作用,不知道是哪個混球想出來的,知道三點坐標的情況下,按照線段長度公式求AB,AC,利用內積求夾角的餘弦值,再轉換為正弦值,最後應用公式S=1/2 bc sinA 整個計算過程和直接用行列式的那個公式相比,看起來復雜不少,其實,一般數據簡單的情況下,計算量遠遠前者小於後者。
E. 3階行列式的計算公式是什麼
不同行不同列的積*-1的逆序數次方的和
| a b c |
| d e f | =(aei+bfg+cdh)-(ceg+bdi+afh)
1 g h i |
F. 三階行列式的計算公式是什麼
三階行列式可用對角線法則:
D = a11a22a33 + a12a23a31 + a13a21a32
- a13a22a31 - a12a21a33 - a11a23a32
用對角線法則如圖:
拓展資料:
二階行列式帶數值的計算方法
如題:
| 34215 35215 |
| 28092 29092 |
解答:
|34215 34215+1000| 拆開變成兩項
|28092 28092+1000|
|34215 34215| 等於0
|28092 28092|
|34215 1000| =(34215-28092)*1000
|28092 1000|
四階行列式的計算公式:
解法1:第一行第一個數乘以它的代數餘子式加第一行第二個數乘負一乘它的代數餘子式加上第一行第三個數乘代數餘子式加上第一行第四個數乘負一乘它的代數餘子式。
解法2:將四階行列式化成上三角行列式,然後乘以對角線上的四個數就可以了。
G. 三階行列式計算公式是什麼
三階行列式可用對角線法則:D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
a1*(a1的餘子式):
某個數的餘子式是指刪去那個數所在的行和列後剩下的行列式。
行列式的每一項要求:不同行不同列的數字相乘如選了a1則與其相乘的數只能在2,3行2,3列中找,(即在 b2b3c2c3中找)。
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展開運算:即行列式等於它第一行的每一個數乘以它的餘子式,或等於第一列的每一個數乘以它的餘子式,然後按照 + - + - + -......的規律給每一項添加符號之後再做求和計算。