《數值計算方法》是數學類專業(如信息與計算專業、數學與應用數學專業)的專業基礎課,主要包括數值逼近、數值代數和微分方程數值解三個部分。隨著學分制改革的推進,該課程也可作為學校部分工科專業學生的選修課。以前我校面向部分工科專業學生開設的《計算方法》課程的大部分內容都包含在《數值計算方法》課程中。
隨著計算機技術的發展和科學技術的進步,科學計算的應用范圍已擴大到許多的學科領域,已經形成了一些邊緣學科。例如,計算物理、計算力學、計算化學等。目前,實驗、理論和計算已經成為了人們進行科學活動的三大方法。對從事工程與科學技術工作的人員,學習和掌握《數值計算方法》是非常必要的。
數值計算方法是數學的一個分支,但它又不象純數學那樣只研究數學本身的理論,而是把數學理論與計算方法緊密結合,既有純數學高度抽象性的特點,又有應用的廣泛性與實際試驗的高度技術性的特點,是一門與計算機使用密切結合的實用性很強的數學課程,著重研究數學問題的數值方法及其理論。
http://www1.snut.e.cn/math/2007/reseach/math_web/
B. 數值計算方法
數值計算的六大方法
有限元法
有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,
將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式,藉助於變分原理或加權餘量法,將微分方程離散求解。
有限體積法
有限體積法(Finite Volume Method)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程
近似求解的誤差估計方法
近似求解的誤差估計方法共有三大類:單元餘量法,通量投射法及外推法。
多尺度計算方法
近年來發展的多尺度計算方法包括均勻化方法、非均勻化多尺度方法、以及小波數值均勻化方法、多尺度有限體積法、多尺度有限元法等。
C. 數值代數的介紹
數值代數通常也稱為矩陣計算,是以計算機為工具來求解各種數學模型的主要課程,同時也是計算方法課程的延續和深入。
D. 代數計算及通過代數計算進行說理問題的解題方法和技巧有哪些
線性代數是代數的一個分支,它以研究向量空間與線性映射為對象;由於費馬和笛卡兒的工作,線性代數基本上出現於十七世紀。直到十八世紀末,線性代數的領域還只限於平面與空間。十九世紀上半葉才完成了到n維向量空間的過渡矩陣論始於凱萊,在十九世紀下半葉,因若當的工作而達到了它的頂點.1888年,皮亞諾以公理的方式定義了有限維或無限維向量空間。托普利茨將線性代數的主要定理推廣到任意體上的最一般的向量空間中.線性映射的概念在大多數情況下能夠擺脫矩陣計算而引導到固有的推理,即是說不依賴於基的選擇。不用交換體而用未必交換之體或環作為運算元之定義域,這就引向模的概念,這一概念很顯著地推廣了向量空間的理論和重新整理了十九世紀所研究過的情況。由於它的簡便,所以就代數在數學和物理的各種不同分支的應用來說,線性代數具有特殊的地位.此外它特別適用於電子計算機的計算,所以它在數值分析與運籌學中佔有重要地位。線性代數是討論矩陣理論、與矩陣結合的有限維向量空間及其線性變換理論的一門學科。主要理論成熟於十九世紀,而第一塊基石(二、三元線性方程組的解法)則早在兩千年前出現(見於我國古代數學名著《九章算術》)。①線性代數在數學、力學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中占居首要地位;②在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬現實等技術無不以線性代數為其理論和演算法基礎的一部分;。③該學科所體現的幾何觀念與代數方法之間的聯系,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智能是非常有用的;④隨著科學的發展,我們不僅要研究單個變數之間的關系,還要進一步研究多個變數之間的關系,各種實際問題在大多數情況下可以線性化,而由於計算機的發展,線性化了的問題又可以計算出來,線性代數正是解決這些問題的有力工具。
E. 初中數學代數部分知識點總結
數與代數A、數與式:1、有理數有理數:①整數→正整數/0/負整數②分數→正分數/負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。②任何一個有理數都可以用數軸上的一個點來表示。③如果兩個數只有符號不同,那麼我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數 無理數:無限不循環小數叫無理數
平方根:①如果一個正數X的平方等於A,那麼這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那麼這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那麼這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合並同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。②把同類項合並成一項就叫做合並同類項。③在合並同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。②一個單項式中,所有字母的指數和叫做這個單項式的次數。③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合並同類項。
冪的運算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那麼這個就是分式,對於任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合並同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高系數為2的方程
1)一元二次方程的二次函數的關系
大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用
5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為「△」,讀作「diao ta」,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△<0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)
2、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:①能使不等式成立的未知數的值,叫做不等式的解。②一個含有未知數的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:A>B,A+C>B+C
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:A>B,A-C>B-C
在不等式中,如果乘以同一個正數,不等號不改向;例如:A>B,A*C>B*C(C>0)
在不等式中,如果乘以同一個負數,不等號改向;例如:A>B,A*C<B*C(C<0)
如果不等式乘以0,那麼不等號改為等號
所以在題目中,要求出乘以的數,那麼就要看看題中是否出現一元一次不等式,如果出現了,那麼不等式乘以的數就不等為0,否則不等式不成立;
3、函數
變數:因變數,自變數。
在用圖象表示變數之間的關系時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函數:①若兩個變數X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函數。②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:①把一個函數的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的 兩個三角形全等
24、推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a2+b2=c2,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的
72、定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74、等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個角相等的梯 形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等
79、推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那麼ad=bc 如果 ad=bc ,那麼a:b=c:d
84、(2)合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87、推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線, 所截得的三角形的三邊與原三角形三邊對應成比例
90、定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3 三邊對應成比例,兩三角形相似(SSS)
95、定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96、性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2 相似三角形周長的比等於相似比
98、性質定理3 相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理 不在同一直線上的三點確定一個圓。
110、垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2 圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116、定理 一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120、定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122、切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理 圓的切線垂直於經過切點的半徑
124、推論1 經過圓心且垂直於切線的直線必經過切點
125、推論2 經過切點且垂直於切線的直線必經過圓心
126、切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等於它所夾的弧對的圓周角
129、推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130、相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133、推論 從圓外一點引圓的兩條割線,這一點到每條 割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那麼切點一定在連心線上
135、①兩圓外離 d>R+r ②兩圓外切 d=R+r③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含 d<R-r(R>r)
136、定理 相交兩圓的連心線垂直平分兩圓的公共弦
137、定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142、正三角形面積√3a/4 a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長= d-(R-r) 外公切線長= d-(R+r)
F. 數值計算方法丁麗娟pdf
《數值計算方法》是作者丁麗娟、程杞元團隊根據數值計算方法課程的基本要求,在多年的教學實踐和原有教材基礎上編寫而成的,包含了數值代數、數值逼近和常微分方程數值解法的基本內容。力求全面、系統地介紹求解各類數學問題近似解的基本、常用的方法,並且著重闡明構造演算法的基本思想與原理。
汽車公司會利用電腦模擬汽車撞擊來提升汽車受到撞擊時的安全性。電腦的模擬會需要求出偏微分方程的數值解。對沖基金會利用各種數值分析的工具來計算股票的市值及其變異程度。航空公司會利用復雜的最佳化演算法決定票價、飛機、人員分配及用油量。此領域也稱為作業研究。保險公司會利用數值軟體進行精算分析。計算太空船的軌跡需要求出常微分方程的數值解。
G. 線性代數知識點總結
線性代數知識點總結
線性代數知識在學習的幾個階段都有相關的知識點出現,下面線性代數知識點總結是我為大家整理的,在這里跟大家分享一下。
線性代數在考研數學中佔有重要地位,必須予以高度重視。線性代數試題的特點比較突出,以計算題為主,證明題為輔,因此,太奇考研專家們提醒廣大的2013年的考生們必須注重計算能力。線性代數在數學一、二、三中均佔22%,所以考生要想取得高分,學好線代也是必要的。下面,就將線代中重點內容和典型題型做了總結,希望對2012年考研的同學們學習有幫助。
行列式在整張試卷中所佔比例不是很大,一般以填空題、選擇題為主,它是必考內容,不只是考察行列式的概念、性質、運算,與行列式有關的考題也不少,例如方陣的行列式、逆矩陣、向量組的線性相關性、矩陣的秩、線性方程組、特徵值、正定二次型與正定矩陣等問題中都會涉及到行列式。如果試卷中沒有獨立的行列式的試題,必然會在其他章、節的試題中得以體現。行列式的重點內容是掌握計算行列式的方法,計算行列式的主要方法是降階法,用按行、按列展開公式將行列式降階。但在展開之前往往先用行列式的性質對行列式進行恆等變形,化簡之後再展開。另外,一些特殊的行列式(行和或列和相等的行列式、三對角行列式、爪型行列式等等)的計算方法也應掌握。常見題型有:數字型行列式的計算、抽象行列式的計算、含參數的行列式的計算。關於每個重要題型的具體方法以及例題見《20xx年全國碩士研究生入學統一考試數學120種常考題型精解》。
矩陣是線性代數的核心,是後續各章的基礎。矩陣的概念、運算及理論貫穿線性代數的始終。這部分考點較多,重點考點有逆矩陣、伴隨矩陣及矩陣方程。涉及伴隨矩陣的定義、性質、行列式、逆矩陣、秩及包含伴隨矩陣的矩陣方程是矩陣試題中的一類常見試題。這幾年還經常出現有關初等變換與初等矩陣的命題。常見題型有以下幾種:計算方陣的冪、與伴隨矩陣相關聯的命題、有關初等變換的命題、有關逆矩陣的計算與證明、解矩陣方程。
向量組的線性相關性是線性代數的重點,也是考研的重點。考生一定要吃透向量組線性相關性的概念,熟練掌握有關性質及判定法並能靈活應用,還應與線性表出、向量組的秩及線性方程組等相聯系,從各個側面加強對線性相關性的理解。常見題型有:判定向量組的線性相關性、向量組線性相關性的證明、判定一個向量能否由一向量組線性表出、向量組的秩和極大無關組的求法、有關秩的證明、有關矩陣與向量組等價的命題、與向量空間有關的命題。
往年考題中,方程組出現的頻率較高,幾乎每年都有考題,也是線性代數部分考查的重點內容。本章的重點內容有:齊次線性方程組有非零解和非齊次線性方程組有解的判定及解的結構、齊次線性方程組基礎解系的求解與證明、齊次(非齊次)線性方程組的求解(含對參數取值的討論)。主要題型有:線性方程組的求解、方程組解向量的判別及解的性質、齊次線性方程組的基礎解系、非齊次線性方程組的通解結構、兩個方程組的公共解、同解問題。
特徵值、特徵向量是線性代數的重點內容,是考研的重點之一,題多分值大,共有三部分重點內容:特徵值和特徵向量的概念及計算、方陣的相似對角化、實對稱矩陣的正交相似對角化。重點題型有:數值矩陣的特徵值和特徵向量的求法、抽象矩陣特徵值和特徵向量的求法、判定矩陣的相似對角化、由特徵值或特徵向量反求A、有關實對稱矩陣的問題。
由於二次型與它的實對稱矩陣式一一對應的,所以二次型的很多問題都可以轉化為它的實對稱矩陣的問題,可見正確寫出二次型的矩陣式處理二次型問題的一個基礎。重點內容包括:掌握二次型及其矩陣表示,了解二次型的秩和標准形等概念;了解二次型的規范形和慣性定理;掌握用正交變換並會用配方法化二次型為標准形;理解正定二次型和正定矩陣的概念及其判別方法。重點題型有:二次型表成矩陣形式、化二次型為標准形、二次型正定性的判別。
一、行列式與矩陣
行列式、矩陣是線性代數中的基礎章節,從命題人的角度來看,可以像潤滑油一般結合其它章節出題,因此必須熟練掌握。
行列式的核心內容是求行列式——具體行列式的計算和抽象行列式的計算。其中具體行列式的計算又有低階和高階兩種類型,主要方法是應用行列式的性質及按行(列)展開定理化為上下三角行列式求解;而對於抽象行列式而言,考點不在如何求行列式,而在於結合後面章節內容的相對綜合的題。
矩陣部分出題很靈活,頻繁出現的知識點包括矩陣各種運算律、矩陣的基本性質、矩陣可逆的判定及求逆、矩陣的秩、初等矩陣等。
二、向量與線性方程組
向量與線性方程組是整個線性代數部分的核心內容。相比之下,行列式和矩陣可視作是為了討論向量和線性方程組部分的問題而做鋪墊的基礎性章節,而其後兩章特徵值和特徵向量、二次型的內容則相對獨立,可以看作是對核心內容的擴展。
向量與線性方程組的內容聯系很密切,很多知識點相互之間都有或明或暗的相關性。復習這兩部分內容最有效的方法就是徹底理順諸多知識點之間的內在聯系,因為這樣做首先能夠保證做到真正意義上的理解,同時也是熟練掌握和靈活運用的前提。
這部分的重要考點一是線性方程組所具有的兩種形式——矩陣形式和向量形式;二是線性方程組與向量以及其它章節的各種內在聯系。
(1)齊次線性方程組與向量線性相關、無關的聯系
齊次線性方程組可以直接看出一定有解,因為當變數都為零時等式一定成立——印證了向量部分的一條性質「零向量可由任何向量線性表示」。
齊次線性方程組一定有解又可以分為兩種情況:①有唯一零解;②有非零解。當齊次線性方程組有唯一零解時,是指等式中的變數只能全為零才能使等式成立,而當齊次線性方程組有非零解時,存在不全為零的變數使上式成立;但向量部分中判斷向量組是否線性相關、無關的定義也正是由這個等式出發的。故向量與線性方程組在此又產生了聯系——齊次線性方程組是否有非零解對應於系數矩陣的列向量組是否線性相關。可以設想線性相關、無關的概念就是為了更好地討論線性方程組問題而提出的。
(2)齊次線性方程組的解與秩和極大無關組的聯系
同樣可以認為秩是為了更好地討論線性相關和線性無關而引入的。秩的定義是「極大線性無關組中的向量個數」。經過「秩→線性相關、無關→線性方程組解的判定」的邏輯鏈條,就可以判定列向量組線性相關時,齊次線性方程組有非零解,且齊次線性方程組的解向量可以通過r個線性無關的解向量(基礎解系)線性表示。
(3)非齊次線性方程組與線性表出的聯系
非齊次線性方程組是否有解對應於向量是否可由列向量
三、特徵值與特徵向量
相對於前兩章來說,本章不是線性代數這門課的理論重點,但卻是一個考試重點。其原因是解決相關題目要用到線代中的大量內容——既有行列式、矩陣又有線性方程組和線性相關性,「牽一發而動全身」。
本章知識要點如下:
1、特徵值和特徵向量的定義及計算方法就是記牢一系列公式和性質。
2、相似矩陣及其性質,需要區分矩陣的相似、等價與合同:
3、矩陣可相似對角化的條件,包括兩個充要條件和兩個充分條件。充要條件一是n階矩陣有n個線性無關的特徵值;二是任意r重特徵根對應有r個線性無關的特徵向量。
4、實對稱矩陣及其相似對角化,n階實對稱矩陣必可正交相似於以其特徵值為對角元素的對角陣。
四、二次型
這部分所講的內容從根本上講是特徵值和特徵向量的一個延伸,因為化二次型為標准型的核心知識為「對於實對稱矩陣,必存在正交矩陣,使其可以相似對角化」,其過程就是上一章實對稱矩陣相似對角化的應用。
本章核心要點如下:
1、用正交變換化二次型為標准型。
2、正定二次型的判斷與證明。
線性代數的學習切入點是線性方程組。換言之,可以把線性代數看作是在研究線性方程組這一對象的過程中建立起來的學科。
線性方程組
線性方程組的特點:方程是未知數的一次齊次式,方程組的數目s和未知數的個數n可以相同,也可以不同。
關於線性方程組的解,有三個問題值得討論:
1、方程組是否有解,即解的存在性問題;
2、方程組如何求解,有多少個;
3、方程組有不止一個解時,這些不同的解之間有無內在聯系,即解的結構問題。
高斯消元法
這最基礎和最直接的求解線性方程組的方法,其中涉及到三種對方程的同解變換:
1、把某個方程的k倍加到另外一個方程上去;
2、交換某兩個方程的位置;
3、用某個常數k乘以某個方程。我們把這三種變換統稱為線性方程組的初等變換。
任意的線性方程組都可以通過初等變換化為階梯形方程組。
由具體例子可看出,化為階梯形方程組後,就可以依次解出每個未知數的值,從而求得方程組的解。
對方程組的解起決定性作用的是未知數的系數及其相對位置,所以可以把方程組的所有系數及常數項按原來的位置提取出來,形成一張表,通過研究這張表,就可以判斷解的情況。我們把這樣一張由若干個數按某種方式構成的表稱為矩陣。
可以用矩陣的形式來表示一個線性方程組,這至少在書寫和表達上都更加簡潔。
系數矩陣和增廣矩陣
高斯消元法中對線性方程組的初等變換,就對應的是矩陣的初等行變換。階梯形方程組,對應的是階梯形矩陣。換言之,任意的線性方程組,都可以通過對其增廣矩陣做初等行變換化為階梯形矩陣,求得解。
階梯形矩陣的特點:左下方的元素全為零,每一行的第一個不為零的元素稱為該行的主元。
對不同的線性方程組的具體求解結果進行歸納總結(有唯一解、無解、有無窮多解),再經過嚴格證明,可得到關於線性方程組解的判別定理:首先是通過初等變換將方程組化為階梯形,若得到的階梯形方程組中出現d=0這一項,則方程組無解,若未出現d=0一項,則方程組有解;在方程組有解的情況下,若階梯形的非零行數目r等於未知量數目n,方程組有唯一解;若r<n,則方程組有無窮多解。
在利用初等變換得到階梯型後,還可進一步得到最簡形,使用最簡形,最簡形的特點是主元上方的元素也全為零,這對於求解未知量的值更加方便,但代價是之前需要經過更多的初等變換。在求解過程中,選擇階梯形還是最簡形,取決於個人習慣。
齊次方程組
常數項全為零的線性方程稱為齊次方程組,齊次方程組必有零解。
齊次方程組的方程組個數若小於未知量個數,則方程組一定有非零解。
利用高斯消元法和解的判別定理,以及能夠回答前述的基本問題:解的存在性問題和如何求解的問題,這是以線性方程組為出發點建立起來的最基本理論。
對於n個方程n個未知數的特殊情形,我們發現可以利用系數的某種組合來表示其解,這種按特定規則表示的系數組合稱為一個線性方程組(或矩陣)的行列式。行列式的特點:有n!項,每項的符號由角標排列的逆序數決定,是一個數。
通過對行列式進行研究,得到了行列式具有的一些性質(如交換某兩行其值反號、有兩行對應成比例其值為零、可按行展開等等),這些性質都有助於我們更方便的計算行列式。
用系數行列式可以判斷n個方程的n元線性方程組的解的情況,這就是克萊姆法則。
總而言之,可把行列式看作是為了研究方程數目與未知量數目相等的特殊情形時引出的一部分內容。
線性代數占考研數學總分值的22%,約34分,以2個選擇題、1個填空題、2個解答題的形式出現。雖然線性代數的考點眾多,但要把這5個題目的分值完全收入囊中,則需要進行重點題型重點突破。
矩陣的秩
矩陣是解決線性方程組的解的有力工具,矩陣也是化簡二次型的方便工具。矩陣理論是線性代數的重點內容,熟悉掌握了矩陣的相關性質與內容,利用其來解決實際應用問題就變得簡單易行。正因為矩陣理論在整個線性代數中的重要作用,使它變為考試考查的重點。矩陣由那麼多元素組成,每一個元素都在扮演不同的角色,其中的核心或主角是它的秩!
通過幾十年考研考試命題,命題老師對題目的形式在不斷地完善,這也要求大家深入理解概念,靈活處理理論之間的關系,能變通地解答題目。例如對矩陣秩的理解,對矩陣的秩與向量組的秩之間的關系的理解,對矩陣等價與向量組等價之間區別的理解,對矩陣的秩與方程組的解之間關系的掌握,對含參數的矩陣的處理以及反問題的解決能力等,都需要在對概念理解的基礎上,聯系地看問題,及時總結結論。
矩陣的特徵值與特徵向量
矩陣的特徵值與特徵向量在將矩陣對角化過程中起著決定作用,也是將二次型標准化、規范化的便捷方式,故特徵值與特徵向量也是考查重點。對於特徵值與特徵向量,須理清其相互關系,也須能根據一些矩陣的特殊性求得其特徵值與特徵向量(例如根據矩陣各行元素之和為3能夠判斷3是其一個特徵值,元素均為1的列向量是其對應的特徵向量),會處理含參數的情況。
線性方程組求解
對線性方程組的求解總是通過矩陣來處理,含參數的方程組是考查的重點,對方程組解的`結構及有解的條件須熟悉。例如2010年第20題(數學二為22題),已知三元非齊次線性方程組存在2個不同的解,求其中的參數並求方程組的通解。此題的關鍵是確定參數!而所有信息完全隱含在"AX=b存在2個不同的解"這句話中。由此可以得到齊次方程組有非0解,系數矩陣降秩,行列式為0,可求得矩陣中的參數;非齊次方程組有解故系數矩陣與增廣矩陣同秩可確定唯一參數及b中的參數。至於確定參數後再求解非齊次方程組就變得非常簡單了。
二次型標准化與正定判斷
二次型的標准化與矩陣對角化緊密相連,即與矩陣的特徵值與特徵向量緊密聯系。這里需要掌握一些處理含參數矩陣的方法以便運算中節省時間。正定二次型有很優秀的性質,但畢竟這是一類特殊矩陣,判斷一個矩陣是否屬於這個特殊類,可以使用正定矩陣的幾個充要條件,例如二次型矩陣的特徵值是否全大於0,順序主子式是否均大於0等,但前者更常用一些。
歷年考研數學真題解析線性代數命題特點解析
考研數學是研究生招生入學考試中通過筆試的形式對考生數學功底的考查,從近幾年的考研數學歷年真題分析結果來看,可以得出一個結論:線性代數的難度在高數和概率統計之間,且大多數的同學認為線性代數試題難度不大,就是計算量稍微偏大點,線代代數的考查是對基本方法的考查,但是往往在做題過程中需要利用一些性質進行輔助解決。
線性代數的學科特點是知識點之間的綜合性比較強,這也是它本身的一個難點。這就需要同學們在復習過程中,注意對於知識點間的關聯性進行對比著學習,有助於鞏固知識點且不易混淆。
總體來說,線性代數主要包括六部分的內容,行列式、矩陣、向量、線性方程組、特徵值與特徵向量、二次型。
一、行列式部分,熟練掌握行列式的計算。
行列式實質上是一個數或含有字母的式子,如何把這個數算出來,一般情況下很少用行列式的定義進行求解,而往往採用行列式的性質將其化成上或下三角行列式進行計算,或是採用降階法(按行或按列展開定理),甚至有時兩種方法同時用。此外范德蒙行列式也是需要掌握的。行列式的考查方式分為低階的數字型矩陣和高階抽象行列式的計算、含參數的行列式的計算等等。同學們只要掌握了基本方法即可。
二、矩陣部分,重視矩陣運算,掌握矩陣秩的應用 。
通過考研數學歷年真題分類統計與考點分布,矩陣部分的考點集中在逆矩陣、伴隨矩陣、矩陣的秩及矩陣方程的考查。此外,含隨矩陣的矩陣方程,矩陣與行列式的關系、逆矩陣的求法也是考生需要掌握的知識點。涉及秩的應用,包含秩與矩陣可逆的關系,矩陣及其伴隨矩陣秩之間的關系,矩陣的秩與向量組的秩之間的關系,矩陣等價與向量組等價的區別與聯系,系數矩陣的秩與方程組的解之間關系的分析。
三、向量部分,理解相關無關概念,靈活進行判定。
向量組的線性相關問題是向量部分的重中之重,也是考研線性代數每年必出的考點。要求考生掌握線性相關、線性表出、線性無關的定義。以及如何判斷向量組線性相關及線性無關的方法。 向量組的秩和極大無關組以及向量組等價這些重要的知識點要求同學們一定一定掌握到位。
這是線性代數前三個內容的命題特點,而行列式的矩陣是整個線性代數的基礎,對於行列式的計算及矩陣的運算與一些重要的性質與結論請考生朋友們一定要務必掌握,否則的話,對於後面四部分的學習會越學越難,希望同學們在復習過程中一定注意前面內容的復習,為後面的考研數學復習打好基礎。
前面我們已經分析過,考研數學線性代數這門學科整體的特點是知識點之間的綜合性比較強,有些概念較為抽象,這也是大部分考生認為考研數學線性代數不好學,根本找不到復習的頭緒,做題時也是一頭霧水,不知道怎麼分析考慮。
這里,老師要求大家在學習過程中一定要注意知識間之間的關聯性,理解概率的實質。如:矩陣的秩與向量組的秩之間的關聯,矩陣等價與向量組等價的區別,矩陣等價、相似、合同三者之間的區別與聯系、矩陣相似對角化與實對稱矩陣正交變換對角化二者之間的區別與聯系等等。若是同學們對於上面的問題根本分不清楚,則說明大家對於基本概念、基本方法還沒有完全理解透徹。不過,大家也不要太焦急,希望同學們在後期的復習過程中對於基本概念、基本方法要多加理解和體會,學習一定要有心得。
下面我們分析一下後面三部分的內容,線性方程組、特徵值與特徵向量、二次型的命題特點。
線性方程組,會求兩類方程組的解。線性方程組是線性代數這么學科的核心和樞紐,很多問題的解決都離不開解方程組。因而線性方程組解的問題是每年必考的知識點。對於齊次線性方程組,我們需要掌握基礎解系的概念,以及如何求一個方程組的基礎解系。清楚明了基礎解系所含線性無關解向量的個數和系數矩陣的秩之間的關系。會判斷非齊次線性方程組的解的情況,掌握其求解的方法。此外,考生還需要掌握非齊次線性方程組與其對應的齊次線性方程組的解結構之間的關系。
特徵值與特徵向量,掌握矩陣對角化的方法。這一部分是理論性較強的,理解特徵值與特徵向量的定義及性質,矩陣相似的定義,矩陣對角化的定義。同學們還需掌握求矩陣特徵值與特徵向量的基本方法。會判斷一個矩陣是否可以對角化,若可以的話,需要把相應的可逆矩陣P求出來。還需要注意矩陣及其關聯矩陣(轉置、逆、伴隨、相似)的特徵值與特徵向量的關系。反問題也是喜歡考查的一類題型,已知矩陣的特徵值與特徵向量,反求矩陣A。
二次型,理解二次型標准化的過程,掌握實對稱矩陣的對角化。二次型幾乎是每年必考的一道大題,一般考查的是採用正交變換法將二次型標准化。掌握二次型的標准形與規范型之間的區別與聯系。會判斷二次型是否正定的一般方法。討論矩陣等價、相似、合同的關系。
雖然線性代數在考研數學考試試卷中僅有5題,佔有34分的分值,但是這34分也不是很輕松就能拿下的。同學們在復習過程中需要對於基礎知識點理解透徹,做考研數學題過程中多分析總結。
;H. 求初一至初三數學知識要點和計算方法
一、數與式
(一)有理數
1、有理數的分類
2、數軸的定義與應用
3、相反數
4、倒數
5、絕對值
6、有理數的大小比較
7、有理數的運算
(二)實數
8、實數的分類
9、實數的運算
10、科學記數法
11、近似數與有效數字
12、平方根與算術根和立方根
13、非負數
14、零指數次冪、負指數次冪
(三)代數式
15、代數式、代數式的值
16、列代數式
(四)整式
17、整式的分類
18、整式的加減、乘除的運算
19、冪的有關運算性質
20、乘法公式
21、因式分解
(五)分式
22、分式的定義
23、分式的基本性質
24、分式的運算
(六)二次根式
25、二次根式的意義
26、根式的基本性質
27、根式的運算
二、方程和不等式
(一)一元一次方程
28、方程、方程的解的有關定義
29、一元一次的定義
30、一元一次方程的解法
31、列方程解應用題的一般步驟
(二)二元一次方程
32、二元一次方程的定義
33、二元一次方程組的定義
34、二元一次方程組的解法(代入法消元法、加減消元法)
35、二元一次方程組的應用
(三)一元二次方程
36、一元二次方程的定義
37、一元二次方程的解法(配方法、因式分解法、公式法、十字相乘法)
38、一元二次方程根與系數的關系和根的判別式
39、一元二次方程的應用
(四)分式方程
40、分式方程的定義
41、分式方程的解法(轉化為整式方程、檢驗)
42、分式方程的增根的定義
43、分式方程的應用
(五)不等式和不等式組
44、不等式(組)的有關定義
45、不等式的基本性質
46、一元一次不等式的解法
47、一元一次不等式組的解法
48、一元一次不等式(組)的應用
三、函數
(一)位置的確定與平面直角坐標系
49、位置的確定
50、坐標變換
51、平面直角坐標系內點的特徵
52、平面直角坐標系內點坐標的符號與點的象限位置
53、對稱問題:P(x,y)→Q(x,- y)關於x軸對稱
P(x,y)→Q(- x,y)關於y軸對稱
P(x,y)→Q(- x,- y)關於原點對稱
54、變數、自變數、因變數、函數的定義
55、函數自變數、因變數的取值范圍(使式子有意義的條件、圖象法)
56、函數的圖象:變數的變化趨勢描述
(二)一次函數與正比例函數
57、一次函數的定義與正比例函數的定義
58、一次函數的圖象:直線,畫法
59、一次函數的性質(增減性)
60、一次函數y=kx+b(k≠0)中k、b符號與圖象位置
61、待定系數法求一次函數的解析式(一設二列三解四回)
62、一次函數的平移問題
63、一次函數與一元一次方程、一元一次不等式、二元一次方程的關系(圖象法)
64、一次函數的實際應用
65、一次函數的綜合應用
(1)一次函數與方程綜合
(2)一次函數與其它函數綜合
(3)一次函數與不等式的綜合
(4)一次函數與幾何綜合
(三)反比例函數
66、反比例函數的定義
67、反比例函數解析式的確定
68、反比例函數的圖象:雙曲線
69、反比例函數的性質(增減性質)
70、反比例函數的實際應用
71、反比例函數的綜合應用(四個方面、面積問題)
(四)二次函數
72、二次函數的定義
73、二次函數的三種表達式(一般式、頂點式、交點式)
74、二次函數解析式的確定(待定系數法)
75、二次函數的圖象:拋物線、畫法(五點法)
76、二次函數的性質(增減性的描述以對稱軸為分界)
77、二次函數y=ax2+bx+c(a≠0)中a、b、c、△與特殊式子的符號與圖象位置關系
78、求二次函數的頂點坐標、對稱軸、最值
79、二次函數的交點問題
80、二次函數的對稱問題
81、二次函數的最值問題(實際應用)
82、二次函數的平移問題
83、二次函數的實際應用
84、二次函數的綜合應用
(1)二次函數與方程綜合
(2)二次函數與其它函數綜合
(3)二次函數與不等式的綜合
(4)二次函數與幾何綜合
1,過兩點有且只有一條直線
2,兩點之間線段最短
3,同角或等角的補角相等
4,同角或等角的餘角相等
5,過一點有且只有一條直線和已知直線垂直
6,直線外一點與直線上各點連接的所有線段中,垂線段最短
7,經過直線外一點,有且只有一條直線與這條直線平行
8,如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9,同位角相等,兩直線平行
10,內錯角相等,兩直線平行
11,同旁內角互補 兩直線行
12,兩直線平行,同位角相等
13,兩直線平行,內錯角相等
14,兩直線平行,同旁內角互補
15,三角形兩邊的和大於第三邊
16,三角形兩邊的差小於第三邊
17,三角形三個內角的和等180°
18,直角三角形的兩個銳角互余
19,三角形的一個外角等於和它不相鄰的兩個內角的和
20,三角形的一個外角大於任何一個和它不相鄰的內角
21,全等三角形的對應邊,對應角相等
22,有兩邊和它們的夾角對應相等的兩個三角形全等 (SAS)
23 有兩角和它們的夾邊對應相等的兩個三角形全等(ASA)
24,有兩角和其中一角的對邊對應相等的兩個三角形全等(AAS)
25,有三邊對應相等的兩個三角形全等 (SSS)
26,有斜邊和一條直角邊對應相等的兩個直角三角形全等(HL)
27,在角的平分線上的點到這個角的兩邊的距離相等
28,到一個角的兩邊的距離相同的點,在這個角的平分線上
29,角的平分線是到角的兩邊距離相等的所有點的集合
30,等腰三角形的性質定理 等腰三角形的兩個底角相等
31,等腰三角形頂角的平分線平分底邊並且垂直於底邊
32,等腰三角形的頂角平分線,底邊上的中線和高互相重合
33,等邊三角形的各角都相等,並且每一個角都等於60°
34,等腰三角形的判定定理 如果一個三角形有兩個角相等, 那麼這兩個角所對的邊也相等(等角對等邊)
35,三個角都相等的三角形是等邊三角形
36,有一個角等於60°的等腰三角形是等邊三角形
37,在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38,直角三角形斜邊上的中線等於斜邊上的一半
39,線段垂直平分線上的點和這條線段兩個端點的距離相等
40,和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41,線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42,關於某條直線對稱的兩個圖形是全等形
43,如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44,兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45,如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46,直角三角形兩直角邊a,b的平方和,等於斜邊c的平方,即a+b=c
47,如果三角形的三邊長a,b,c有關系a+b=c,那麼這個三角形是直角三角形
48,四邊形的內角和等於360°
49,四邊形的外角和等於360°
50,多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51,任意多邊的外角和等於360°
52,平行四邊形的對角相等
53,平行四邊形的對邊相等
54,夾在兩條平行線間的平行線段相等
55,平行四邊形的對角線互相平分
56,兩組對角分別相等的四邊形是平行四邊形
57,兩組對邊分別相等的四邊形是平行四邊形
58,對角線互相平分的四邊形是平行四邊形
59,一組對邊平行相等的四邊形是平行四邊形
60,矩形的四個角都是直角
61,矩形的對角線相等
62,有三個角是直角的四邊形是矩形
63,對角線相等的平行四邊形是矩形
64,菱形的四條邊都相等
65,菱形的對角線互相垂直,並且每一條對角線平分一組對角
66,菱形面積=對角線乘積的一半,即S=(a×b)÷2
67,四邊都相等的四邊形是菱形
68,對角線互相垂直的平行四邊形是菱形
69,正方形的四個角都是直角,四條邊都相等
70,正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71,關於中心對稱的兩個圖形是全等的
72,關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73,如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱
74,等腰梯形在同一底上的兩個角相等
75,等腰梯形的兩條對角線相等
76,在同一底上的兩個角相等的梯形是等腰梯形
77,對角線相等的梯形是等腰梯形
78,如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79,經過梯形一腰的中點與底平行的直線,必平分另一腰
80,經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81,三角形的中位線平行於第三邊,並且等於它的一半
82,梯形的中位線平行於兩底,並且等於兩底和的 一半
L=(a+b) S=L×h
83,如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84,如果a/b=c/d,那麼
(a±b)/ b=(c±d)/d
85,如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86,三條平行線截兩條直線,所得的對應線段成比例
87,平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88,如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89,平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90,平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91,兩角對應相等,兩三角形相似(ASA)
92,直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93,兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94,三邊對應成比例,兩三角形相似(SSS)
95,如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96,相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97,相似三角形周長的比等於相似比
98,相似三角形面積的比等於相似比的平方
99,任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100,任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101,圓是定點的距離等於定長的點的集合
102,圓的內部可以看作是圓心的距離小於半徑的點的集合
103,圓的外部可以看作是圓心的距離大於半徑的點的集合
104,同圓或等圓的半徑相等
105,到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106,和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107,到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108,到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109,不在同一直線上的三個點確定一條直線
110,垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111, ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112,圓的兩條平行弦所夾的弧相等
113,圓是以圓心為對稱中心的中心對稱圖形
114,在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115,在同圓或等圓中,如果兩個圓心角,兩條弧,兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116,一條弧所對的圓周角等於它所對的圓心角的一半
117,同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118,半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119,如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120,圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121,①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122,經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123,圓的切線垂直於經過切點的半徑
124,經過圓心且垂直於切線的直線必經過切點
125,經過切點且垂直於切線的直線必經過圓心
126,從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127,圓的外切四邊形的兩組對邊的和相等
128,弦切角等於它所夾的弧對的圓周角
129,如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130,圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131,如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132,從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133,從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134,如果兩個圓相切,那麼切點一定在連心線上
135,①兩圓外離d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136,相交兩圓的連心線垂直平分兩圓的公共弦
137,把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138,任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139,正n邊形的每個內角都等於(n-2)×180°/n
140,正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141,正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142,正三角形面積√3a/4 a表示邊長
143,如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為
(n-2)(k-2)=4
144,弧長計算公式:L=n∏R/180
145,扇形面積公式:S扇形=n∏R/360=LR/2
146,內公切線長= d-(R-r) 外公切線長= d-(R+r)
有理數的加法運算
同號兩數來相加,絕對值加不變號.異號相加大減小,大數決定和符號.互為相反數求和,結果是零須記好. 【注】「大」減「小」是指絕對值的大小.
有理數的減法運算
減正等於加負,減負等於加正.有理數的乘法運算符號法則同號得正異號負,一項為零積是零.
合並同類項
說起合並同類項,法則千萬不能忘.只求系數代數和,字母指數留原樣.
去、添括弧法則
去括弧或添括弧,關鍵要看連接號.擴號前面是正號,去添括弧不變號.括弧前面是負號,去添括弧都變號.
解方程
已知未知鬧分離,分離要靠移完成.移加變減減變加,移乘變除除變乘.
平方差公式
兩數和乘兩數差,等於兩數平方差.積化和差變兩項,完全平方不是它.
完全平方公式
二數和或差平方,展開式它共三項.首平方與末平方,首末二倍中間放.和的平方加聯結,先減後加差平方.
完全平方公式
首平方又末平方,二倍首末在中央.和的平方加再加,先減後加差平方.
解一元一次方程
先去分母再括弧,移項變號要記牢.同類各項去合並,系數化「1」還沒好.求得未知須檢驗,回代值等才算了.
解一元一次方程
先去分母再括弧,移項合並同類項.系數化1還沒好,准確無誤不白忙.
因式分解與乘法
和差化積是乘法,乘法本身是運算.積化和差是分解,因式分解非運算.
因式分解
兩式平方符號異,因式分解你別怕.兩底和乘兩底差,分解結果就是它.兩式平方符號同,底積2倍坐中央.因式分解能與否,符號上面有文章.同和異差先平方,還要加上正負號.同正則正負就負,異則需添冪符號.
因式分解
一提二套三分組,十字相乘也上數.四種方法都不行,拆項添項去重組.重組無望試求根,換元或者算余數.多種方法靈活選,連乘結果是基礎.同式相乘若出現,乘方表示要記住.【注】一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數.五種方法都不行,拆項添項去重組.對症下葯穩又准,連乘結果是基礎.
二次三項式的因式分解
先想完全平方式,十字相乘是其次.兩種方法行不通,求根分解去嘗試.
比和比例
兩數相除也叫比,兩比相等叫比例.外項積等內項積,等積可化八比例.分別交換內外項,統統都要叫更比.同時交換內外項,便要稱其為反比.前後項和比後項,比值不變叫合比.前後項差比後項,組成比例是分比.兩項和比兩項差,比值相等合分比.前項和比後項和,比值不變叫等比.
解比例
外項積等內項積,列出方程並解之.
求比值
由已知去求比值,多種途徑可利用.活用比例七性質,變數替換也走紅. 消元也是好辦法,殊途同歸會變通.
正比例與反比例
變化過程商一定,兩個變數成正比.變化過程積一定,兩個變數成反比.
判斷四數成比例
四數是否成比例,遞增遞減先排序.兩端積等中間積,四數一定成比例.
判斷四式成比例
四式是否成比例,生或降冪先排序. 兩端積等中間積,四式便可成比例.
比例中項
成比例的四項中,外項相同會遇到. 有時內項會相同,比例中項少不了.比例中項很重要,多種場合會碰到.成比例的四項中,外項相同有不少.有時內項會相同,比例中項出現了. 同數平方等異積,比例中項無處逃.
根式與無理式
表示方根代數式,都可稱其為根式.根式異於無理式,被開方式無限制. 被開方式有字母,才能稱為無理式.無理式都是根式,區分它們有標志.被開方式有字母,又可稱為無理式.
求定義域
求定義域有講究,四項原則須留意.負數不能開平方,分母為零無意義.指是分數底正數,數零沒有零次冪.限制條件不唯一,滿足多個不等式.求定義域要過關,四項原則須注意.負數不能開平方,分母為零無意義.分數指數底正數,數零沒有零次冪.限制條件不唯一,不等式組求解集.
解一元一次不等式
先去分母再括弧,移項合並同類項. 系數化「1」有講究,同乘除負要變向.先去分母再括弧,移項別忘要變號.同類各項去合並,系數化「1」注意了.同乘除正無防礙,同乘除負也變號.
解一元一次不等式組
大於頭來小於尾,大小不一中間找.大大小小沒有解,四種情況全來了.同向取兩邊,異向取中間.中間無元素,無解便出現. 幼兒園小鬼當家,(同小相對取較小) 敬老院以老為榮,(同大就要取較大) 軍營里沒老沒少.(大小小大就是它)大大小小解集空.(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構造函數第二站.判別式值若非負,曲線橫軸有交.a正開口它向上,大於零則取兩邊.代數式若小於零,解集交點數之間. 方程若無實數根,口上大零解為全.小於零將沒有解,開口向下正相反.
用平方差公式因式分解
異號兩個平方項,因式分解有辦法.兩底和乘兩底差,分解結果就是它.
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部. 同正兩底和平方,全負和方相反數. 分成兩底差平方,方正倍積要為負.兩邊為負中間正,底差平方相反數.一平方又一平方,底積2倍在中路. 三正兩底和平方,全負和方相反數.分成兩底差平方,兩端為正倍積負. 兩邊若負中間正,底差平方相反數.
用公式法解一元二次方程
要用公式解方程,首先化成一般式. 調整系數隨其後,使其成為最簡比.確定參數abc,計算方程判別式. 判別式值與零比,有無實根便得知. 有實根可套公式,沒有實根要告之.
用常規配方法解一元二次方程
左未右已先分離,二系化「1」是其次. 一系折半再平方,兩邊同加沒問題.左邊分解右合並,直接開方去解題.該種解法叫配方,解方程時多練習.
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次.調整系數等互反,和差積套恆等式.完全平方等常數,間接配方顯優勢 .
【注】 恆等式
解一元二次方程
方程沒有一次項,直接開方最理想. 如果缺少常數項,因式分解沒商量.b、c相等都為零,等根是零不要忘.b、c同時不為零,因式分解或配方, 也可直接套公式,因題而異擇良方.
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走.一量表示另一量, 有沒有. 若有再去看取值,全體實數都需要.區分正比例.一量表示另一量, 是與否.若有還要看取值,全體實數都要有.
正比例函數的圖象與性質
正比函數圖直線,經過 和原點. K正一三負二四,變化趨勢記心間.K正左低右邊高,同大同小向爬山.K負左高右邊低,一大另小下山巒.
一次函數
一次函數圖直線,經過 點.K正左低右邊高,越走越高向爬山.K負左高右邊低,越來越低很明顯K稱斜率b截距,截距為零變正函.
反比例函數
反比函數雙曲線,經過 點.K正一三負二四,兩軸是它漸近線.K正左高右邊低,一三象限滑下山.K負左低右邊高,二四象限如爬山.
二次函數
二次方程零換y,二次函數便出現.全體實數定義域,圖像叫做拋物線.拋物線有對稱軸,兩邊單調正相反.A定開口及大小,線軸交點叫頂點. 頂點非高即最低.上低下高很顯眼. 如果要畫拋物線,平移也可去描點,提取配方定頂點,兩條途徑再挑選.列表描點後連線,平移規律記心間.左加右減括弧內,號外上加下要減.二次方程零換y,就得到二次函數圖像叫做拋物線,定義域全體實數.A定開口及大小,開口向上是正數.絕對值大開口小,開口向下A負數. 拋物線有對稱軸,增減特性可看圖.線軸交點叫頂點,頂點縱標最值出. 如果要畫拋物線,描點平移兩條路.提取配方定頂點,平移描點皆成圖. 列表描點後連線,三點大致定全圖.若要平移也不難,先畫基礎拋物線,頂點移到新位置,開口大小隨基礎.
【注】基礎拋物線
直線、射線與線段 .
直線射線與線段,形狀相似有關聯. 直線長短不確定,可向兩方無限延. 射線僅有一端點,反向延長成直線.線段定長兩端點,雙向延伸變直線. 兩點定線是共性,組成圖形最常見.
角
一點出發兩射線,組成圖形叫做角. 共線反向是平角,平角之半叫直角. 平角兩倍成周角,小於直角叫銳角.直平之間是鈍角,平周之間叫優角.互余兩角和直角,和是平角互補角. 一點出發兩射線,組成圖形叫做角. 平角反向且共線,平角之半叫直角. 平角兩倍成周角,小於直角叫銳角.鈍角界於直平間,平周之間叫優角.和為直角叫互余,互為補角和平角.
證等積或比例線段
等積或比例線段,多種途徑可以證 .證等積要改等比,對照圖形看特徵. 共點共線線相交,平行截比把題證.三點定型十分像,想法來把相似證. 圖形明顯不相似,等線段比替換證.換後結論能成立,原來命題即得證.實在不行用面積,射影角分線也成. 只要學習肯登攀,手腦並用無不勝.
解無理方程
一無一有各一邊,兩無也要放兩邊.乘方根號無蹤跡,方程可解無負擔.兩無一有相對難,兩次乘方也好辦. 特殊情況去換元,得解驗根是必然.
解分式方程
先約後乘公分母,整式方程轉化出.特殊情況可換元,去掉分母是出路. 求得解後要驗根,原留增舍別含糊.
列方程解應用題
列方程解應用題,審設列解雙檢答. 審題弄清已未知,設元直間兩辦法. 列表畫圖造方程,解方程時守章法.檢驗准且合題意,問求同一才作答.
添加輔助線
學習幾何體會深,成敗也許一線牽.分散條件要集中,常要添加輔助線. 畏懼心理不要有,其次要把觀念變.熟能生巧有規律,真知灼見靠實踐.圖中已知有中線,倍長中線把線連. 旋轉構造全等形,等線段角可代換.多條中線連中點,便可得到中位線.倘若知角平分線,既可兩邊作垂線.也可沿線去翻折,全等圖形立呈現.角分線若加垂線,等腰三角形可見.角分線加平行線,等線段角位置變已知線段中垂線,連接兩端等線段.輔助線必畫虛線,便與原圖聯系看.
兩點間距離公式
同軸兩點求距離,大減小數就為之. 與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記.
矩形的判定
任意一個四邊形,三個直角成矩形;對角線等互平分,四邊形它是矩形.已知平行四邊形,一個直角叫矩形;兩對角線若相等,理所當然為矩形.
菱形的判定
任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
I. 數值代數的課程主要內容
⑴矩陣論基礎,包括矩陣的三角相似與對角相似,矩陣的奇異值分解,矩陣的廣義逆及其應用等。
⑵線性方程組的迭代解法,包括古典迭代方法,基於變分原理的迭代方法,迭代-校正加速方法等。
⑶帶狀線性方程組的直接解法,包括三對角方程組,周期三對角方程組,塊三對角方程組,周期塊三對角方程組,Hesenherg方程組的求解等。
⑷特殊方程組的遞推解法,包括Hankel, Toplitrz,Vandermond方程組的求解等。
⑸矩陣特徵值問題的解法,包括冪法,Krylov方法,Lanczos方法等。
⑹線性矩陣方程的迭代解法,包括計算逆矩陣的迭代方法,Lyapunov矩陣方程的迭代解法,線性矩陣方程的迭代-校正解法等。
[7]誤差分析。包括模型誤差,觀測誤差,絕對誤差,相對誤差以及如何減小誤差等。
J. 初二上冊數學代數式知識點總結
重點代數式的有關概念及性質,代數式的運算
☆內容提要☆
一、 重要概念
分類:
1.代數式與有理式
用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
整式和分式統稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算並且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式。(數字與字母的積-包括單獨的一個數或字母)
幾個單項式的和,叫做多項式。
說明:
①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。
②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如,
=x, =│x│等。
4.系數與指數
區別與聯系:
①從位置上看;
②從表示的意義上看
5.同類項及其合並
條件:
①字母相同;
②相同字母的指數相同
合並依據:乘法分配律
6.根式
表示方根的代數式叫做根式。
含有關於字母開方運算的代數式叫做無理式。
注意:
①從外形上判斷;
②區別: 、 是根式,但不是無理式(是無理數)。
7.算術平方根
⑴正數a的正的平方根( [a0-與平方根的區別]);
⑵算術平方根與絕對值
① 聯系:都是非負數, =│a│
②區別:│a│中,a為一切實數; 中,a為非負數。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。
滿足條件:
①被開方數的因數是整數,因式是整式;
②被開方數中不含有開得盡方的因數或因式。
把分母中的根號劃去叫做分母有理化。
9.指數
⑴ ( -冪,乘方運算)
① a0時, ②a0時, 0(n是偶數), 0(n是奇數)
⑵零指數: =1(a0)
負整指數: =1/ (a0,p是正整數)
二、 運算定律、性質、法則
1.分式的'加、減、乘、除、乘方、開方法則
2.分式的性質
⑴基本性質: = (m0)
⑵符號法則:
⑶繁分式:
①定義;
②化簡方法(兩種)
3.整式運演算法則(去括弧、添括弧法則)
4.冪的運算性質:① o = ;② ③ = ;④ = ;⑤
技巧:
5.乘法法則:
⑴單
⑵單
⑶多多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(ab) =
7.除法法則:
⑴單
⑵多單。
8.因式分解:
⑴定義;
⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術根的性質: = ; ; (a0); (a0)(正用、逆用)
10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. .
11.科學記數法: (110,n是整數=
一、代數式的定義:
用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
注意:
(1)單個數字與字母也是代數式;
(2)代數式與公式、等式的區別是代數式中不含等號,而公式和等式中都含有等號;
(3)代數式可按運算關系和運算結果兩種情況理解。
三、整式:單項式與多項式統稱為整式。
1.單項式:數與字母的積所表示的代數式叫做單項式,單項式中的數字因數叫做單項式的系數;單項式中所有字母的指數的和叫做單項式的次數。特別地,單獨一個數或者一個字母也是單項式。
2.多項式:幾個單項式的和叫做多項式,在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項;在多項式里,次數最高項的次數就是這個多項式的次數。
四、升(降)冪排列:
把一個多項式按某一個字母的指數從小到大(或從大到小)的順序排列起來,叫做把多項式按這個字母升(降)冪排列。
五、代數式書寫要求:
1.代數式中出現的乘號通常用「·」表示或者省略不寫;數與字母相乘時,數應寫在字母前面;數與數相乘時,仍用「×」號;
2.數字與字母相乘、單項式與多項式相乘時,一般按照先寫數字,再寫單項式,最後寫多項式的書寫順序.如式子(a+b)·2·a 應寫成2a(a+b);
3.帶分數與字母相乘時,應先把帶分數化成假分數後再與字母相乘;
4.在代數式中出現除法運算時,按分數的寫法來寫;
5.在一些實際問題中,有時表示數量的代數式有單位名稱,如果代數式是積或商的形式,則單位直接寫在式子後面;如果代數式是和或差的形式,則必須先把代數式用括弧括起來,再將單位名稱寫在式子的後面,如2a米,(2a-b)kg。
六、系數與次數
單項式的系數和次數,多項式的項數和次數。
1.單項式的系數:單項式中的數字因數叫做單項式的系數。
注意:(1)單項式的系數包括它前面的符號;
(2)若單項式的系數是"1」或-1「時,"1"通常省略不寫,但「-」號不能省略。
2.單項式的次數:單項式中所有字母的指數和叫做單項式的次數。
注意:(1)單項式的次數是它含有的所有字母的指數和,只與字母的指數有關,與其系數無關;
(2)單項式中字母的指數為1時,1通常省略不寫,在確定單項式的次數時,一定不要忘記被省略的1。
3.多項式的次數:多項式中次數最高的項的次數就是多項式的次數.
4.多項式的項數:在多項式中,每個單項式都叫做多項式的項,其中不含字母的項稱為常數項。一個多項式有幾項,就叫幾項式,它的項數就是幾。多項式的項數實質是「和」 中單項式的個數。
七、列代數式:
用含有數、字母和運算符號的式子把問題中的數量表示出來就是列代數式。
正確列出代數式,要掌握以下幾點:
(1)列代數式的關鍵是理解和找出問題中的數量關系;
(2)要掌握一些常見的數量關系如行程問題、工程問題、濃度問題、數字問題等;
(3)要善於抓住問題中的關鍵詞語,如和、差、積、商、大、小、幾倍、平方、多、少等。
八、代數式求值:
一般地,用數值代替代數式中的字母,按照代數式中指明的運算計算的結果叫做代數式求值。
代數式求值的三種方法:1.直接代入求值;2.化簡代入求值;3.整體代入求值。
常見考法
列代數式與代數式求值是中考的必考知識點,它涉及的知識范圍廣,可與實際問題(如乘車,購物、儲蓄、稅收等)相結合,特別的探索規律列代數式這類考題為中考命題者提供了廣泛的空間,是近幾年的熱點,這類題通常是從一列數、一個數陣、一個等式、一組圖形中,觀察出規律,並嘗試歸納出代數式或公式,再加以驗證。
誤區提醒
(1)列代數式時,由於審題不清,對條件理解不透,很容易搞錯運算順序而列錯代數式;(2)求代數式的值,將代數式中字母用相應的數值後,代數式就變成了實數的混合運算。如果沒有對實數運算掌握好,就會出現運算順序搞錯的現象。(3)在進行規律探索中,由於在審題中沒有抓住問題的性質,常常得出不能完全反映全部規律的錯誤規律,出現以點概面,以偏概全的現象。
1、用加、減、乘(乘方)、除等運算符號把數或表示數的字母連接而成的式子,叫做代數式。(註:單獨一個數字或字母也是代數式)
2、代數式的寫法:數學與字母相乘時,「×」號省略,數字寫在字母前;字母與字母相乘時,相同字母寫成冪的形式;數字與數字相乘時,「×」號不能省略;式中出現除法時,一般寫成分數形式。式中出現帶分數時,一般寫成假分數形式。
3、分段問題書寫代數式時要分段考慮,有單位時要考慮是否要();如:電費、水費、計程車、商店優惠-------。
4、單項式:由數字和字母乘積組成的式子。單獨一個數或一個字母也是單項式.因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,若①分母中不含有字母,②式子中含有加、減運算關系,也不是單項式.
單項式的系數:是指單項式中的數字因數;(不要漏負號和分母)
單項數的次數:是指單項式中所有字母的指數的和.(注意指數1)
5、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式.每個單項式稱項,(其中不含字母的項叫常數項)多項式的次數是指多項式里次數最高項的次數(選代表);多項式的項是指在多項式中每一個單項式.特別注意多項式的項包括它前面的性質符號.它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的每一項都包括它前面的符號。
6、代數式分為整式和分式(分母里含有字母);整式分為單項式和多項式。