㈠ 排列組合的計算公式是什麼
排列組合的計算公式是A(n,m)=n×(n-1).(n-m+1)=n/(n-m)。排列組合是組合學最基本的概念,所謂排列,就是指從給定個數的元素中取出指定個數的元素進行排序,組合則是指從給定個數的元素中僅僅取出指定個數的元素,不考慮排序。
排列組合的發展
排列組合的中心問題是研究給定要求的排列和組合可能出現的情況總數。排列組合與古典概率論關系密切,雖然數學始於結繩計數的遠古時代,由於那時社會的生產水平的發展尚處於低級階段,談不上有什麼技巧。
隨著人們對於數的了解和研究,在形成與數密切相關的數學分支的過程中,如數論、代數、函數論以至泛函的形成與發展,逐步地從數的多樣性發現數數的多樣性,產生了各種數數的技巧,同時,人們對數有了深入的了解和研究,在形成與形密切相關的各種數學分支的過程中,如幾何學、拓撲學以至范疇論的形成與發展。
㈡ 排列數公式怎麼計算
計算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
基本理論和公式
排列與元素的順序有關,組合與順序無關。如231與213是兩個排列,2+3+1的和與2+1+3的和是一個組合。
(一)兩個基本原理是排列和組合的基礎
(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
(2)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。
這里要注意區分兩個原理,要做一件事,完成它若是有n類辦法,是分類問題,第一類中的方法都是獨立的,因此用加法原理;做一件事,需要分n個步驟,步與步之間是連續的,只有將分成的若干個互相聯系的步驟,依次相繼完成,這件事才算完成,因此用乘法原理。這樣完成一件事的分「類」和「步」是有本質區別的,因此也將兩個原理區分開來。
(二)排列和排列數
(1)排列:從n個不同元素中,任取m(m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.
從排列的意義可知,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序必須完全相同,這就告訴了我們如何判斷兩個排列是否相同的方法.
(2)排列數公式:從n個不同元素中取出m(m≤n)個元素的所有排列
當m=n時,為全排列Pnn=n(n-1)(n-2)…3·2·1=n!
㈢ 怎麼計算排列數、組合數
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
(3)排列計算方法擴展閱讀:
排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示。
計算公式:
;C(n,m)=C(n,n-m)。(n≥m)
其他排列與組合公式 從n個元素中取出m個元素的循環排列數=A(n,m)/m=n!/m(n-m)!. n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為 n!/(n1!×n2!×...×nk!). k類元素,每類的個數無限,從中取出m個元素的組合數為C(m+k-1,m)。
㈣ 排列組合知識的計算方法有哪幾種
1、C的計算公式:
C表示組合方法的數量,比如:C(3,2),表示從3個物體中選出2個,總共的方法是3種,分別是甲乙、甲丙、乙丙(3個物體是不相同的情況下)。
2、A的計算公式:
A表示排列方法的數量,比如:n個不同的物體,要取出m個(m<=n)進行排列,方法就是A(n,m)種,也可以這樣想,排列放第一個有n種選擇,第二個有n-1種選擇,第三個有n-2種選擇·····第m個有n+1-m種選擇,所以總共的排列方法是n(n-1)(n-2)···(n+1-m),也等於A(n,m)。
兩個常用的排列基本計數原理及應用:
1、加法原理和分類計數法:
每一類中的每一種方法都可以獨立地完成此任務,兩類不同辦法中的具體方法,互不相同(即分類不重),完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法:
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務,各步計數相互獨立,只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
㈤ 排列的計算公式是什麼
計算公式如下:
公式A是排列公式,從N個元素取M個進行排列(即排序)。
排列數公式就是從n個不同元素中,任取m(m≤n)個元素(被取出的元素各不相同),按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。排列與元素的順序有關,組合與順序無關。加法原理和乘法原理是排列和組合的基礎。
兩個基本原理是排列和組合的基礎
(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
(2)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。
㈥ 排列組合A和C都有哪些計算方法
計算方法——
(1)排列數公式
排列用符號A(n,m)表示,m_n。
計算公式是:A(n,m)=n(n-1)(n-2)??(n-m+1)=n!/(n-m)!
此外規定0!=1,n!表示n(n-1)(n-2)?1
例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。
(2)組合數公式
組合用符號C(n,m)表示,m_n。
公式是:C(n,m)=A(n,m)/m!或C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
(6)排列計算方法擴展閱讀:
排列有兩種定義,但計算方法只有一種,凡是符合這兩種定義的都用這種方法計算;定義的前提條件是m_n,m與n均為自然數。
(1)從n個不同元素中,任取m個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列。
(2)從n個不同元素中,取出m個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數。
㈦ 排列組合的計算公式是什麼
排列組合的計算公式:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n為下標,m為上標,以下同)。
組合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
除法運算
1、除以一個不等於零的數,等於乘這個數的倒數。
2、兩數相除,同號得正,異號得負,並把絕對值相除。零除以任意一個不等於零的數,都得零。
注意:
零不能做除數和分母。
有理數的除法與乘法是互逆運算。
㈧ 排列組合怎麼算
排列組合計算公式如下:
從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示。
排列數:從n個中取m個排一下,有n(n-1)(n-2)...(n-m+1)種,即n!/(n-m)!
組合數:從n個中取m個,相當於不排,就是n!/[(n-m)!m!]
定義及公式
排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個不同的元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數。
其他排列與組合公式從n個元素中取出m個元素的循環排列數=A(n,m)/m=n!/m(n-m)!。n個元素被分成k類,每類的個數分別是n1,n2,nk這n個元素的全排列數為n!/(n1!×n2!×nk!)。k類元素,每類的個數無限,從中取出m個元素的組合數為C(m+k-1,m)。
以上內容參考:網路-排列組合
㈨ 排列組合公式計算公式是什麼
排列組合公式計算公式大全如下所示。
1、排列及計算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示。p(n,m)=n(n-1)(n-2)…(n-m+1)= n!/(n-m)!(規定0!=1)。
2、組合及計算公式
從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數。
用符號c(n,m)表示,c(n,m)=p(n,m)/m!=n!/((n-m)!*m!),c(n,m)=c(n,n-m)。
3.其他排列與組合公式
從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!。n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為n!/(n1!*n2!*...*nk!)。k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m)。排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)-(n-m+1);Pnm=n!/(n-m)!(註:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1。
Pn1(n為下標1為上標)=n組合(Cnm(n為下標,m為上標))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m。
㈩ 排列組合的公式
排列組合計算公式如下:
1、從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示。
排列就是指從給定個數的元素中取出指定個數的元素進行排序。組合則是指從給定個數的元素中僅僅取出指定個數的元素,不考慮排序。
排列組合的中心問題是研究給定要求的排列和組合可能出現的情況總數。 排列組合與古典概率論關系密切。
(10)排列計算方法擴展閱讀
排列組合的發展歷程:
根據組合學研究與發展的現狀,它可以分為如下五個分支:經典組合學、組合設計、組合序、圖與超圖和組合多面形與最優化。
由於組合學所涉及的范圍觸及到幾乎所有數學分支,也許和數學本身一樣不大可能建立一種統一的理論。
然而,如何在上述的五個分支的基礎上建立一些統一的理論,或者從組合學中獨立出來形成數學的一些新分支將是對21世紀數學家們提出的一個新的挑戰。