導航:首頁 > 計算方法 > 手機指紋圖像計算方法

手機指紋圖像計算方法

發布時間:2022-11-22 01:21:47

『壹』 一般鑒定指紋如何進行

1、讀取指紋圖象:在一開始,通過指紋讀取設備讀取到人體指紋的圖象,取到指紋圖象之後,要對原始圖象進行初步的處理,使之更清晰。

2、提取特徵:接下來,指紋辨識軟體建立指紋的數字表示——特徵數據,一種單方向的轉換,可以從指紋轉換成特徵數據但不能從特徵數據轉換成為指紋,而兩枚不同的指紋不會產生相同的特徵數據。

3、保存數據:有的演算法把節點和方向信息組合產生了更多的數據,這些方向信息表明了各個節點之間的關系,也有的演算法還處理整幅指紋圖像。總之,這些數據,通常稱為模板,保存為1K大小的記錄。

4、比對數據:通過計算機模糊比較的方法,把兩個指紋的模板進行比較,計算出它們的相似程度,最終得到兩個指紋的匹配結果。指紋其實是比較復雜的。

(1)手機指紋圖像計算方法擴展閱讀:

指紋的優點

1、指紋是人體不一樣的的特徵,並且它們的復雜度足以提供用於鑒別的足夠特徵;

2、如果要增加可靠性,只需登記更多的指紋、鑒別更多的手指,最多可以多達十個,而每一個指紋都是不一樣的;

3、掃描指紋的速度很快,使用非常方便;

4、讀取指紋時,用戶必需將手指與指紋採集頭相互接觸,與指紋採集頭直接;

5、接觸是讀取人體生物特徵最可靠的方法;

6、指紋採集頭可以更加小型化,並且價格會更加的低廉。

『貳』 指紋識別技術是基於哪些原理

指紋其實是比較復雜的。與人工處理不同,許多生物識別技術公司並不直接存儲指紋的圖像。多年來在各個公司及其研究機構產生了許多數字化的演算法(美國有關法律認為,指紋圖像屬於個人隱私,因此不能直接存儲指紋圖像)。但指紋識別演算法最終都歸結為在指紋圖像上找到並比對指紋的特徵。
指紋的特徵
我們定義了指紋的兩類特徵來進行指紋的驗證:總體特徵和局部特徵。總體特徵是指那些用人眼直接就可以觀察到的特徵,包括:
基本紋路圖案
環型(loop),
弓型(arch),
螺旋型(whorl)。其他的指紋圖案都基於這三種基本圖案。僅僅依靠圖案類型來分辨指紋是遠遠不夠的,這只是一個粗略的分類,但通過分類使得在大資料庫中搜尋指紋更為方便。
模式區(Pattern
Area)模式區是指指紋上包括了總體特徵的區域,即從模式區就能夠分辨出指紋是屬於那一種類型的。有的指紋識別演算法只使用模式區的數據。
Aetex
的指紋識別演算法使用了所取得的完整指紋而不僅僅是模式區進行分析和識別。
核心點(Core
Point)核心點位於指紋紋路的漸進中心,它用於讀取指紋和比對指紋時的參考點。
三角點(Delta)三角點位於從核心點開始的第一個分叉點或者斷點、或者兩條紋路會聚處、孤立點、折轉處,或者指向這些奇異點。三角點提供了指紋紋路的計數和跟蹤的開始之處。
式樣線(Type
Lines)式樣線是在指包圍模式區的紋路線開始平行的地方所出現的交叉紋路,式樣線通常很短就中斷了,但它的外側線開始連續延伸。
紋數(Ridge
Count)指模式區內指紋紋路的數量。在計算指紋的紋數時,一般先在連接核心點和三角點,這條連線與指紋紋路相交的數量即可認為是指紋的紋數。
局部特徵
局部特徵是指指紋上的節點。兩枚指紋經常會具有相同的總體特徵,但它們的局部特徵--節點,卻不可能完全相同
節點(Minutia
Points)指紋紋路並不是連續的,平滑筆直的,而是經常出現中斷、分叉或打折。這些斷點、分叉點和轉折點就稱為"節點"。就是這些節點提供了指紋唯一性的確認信息。
指紋上的節點有四種不同特性:
1.
分類
-
節點有以下幾種類型,最典型的是終結點和分叉點
A.
終結點(Ending)
--
一條紋路在此終結。
B.
分叉點(Bifurcation)
--
一條紋路在此分開成為兩條或更多的紋路。
C.
分歧點(Ridge
Divergence)
--
兩條平行的紋路在此分開。
D.
孤立點(Dot
or
Island)
--
一條特別短的紋路,以至於成為一點
E.
環點(Enclosure)
--
一條紋路分開成為兩條之後,立即有合並成為一條,這樣形成的一個小環稱為環點
F.
短紋(Short
Ridge)
--
一端較短但不至於成為一點的紋路,
2.
方向(Orientation)
--
節點可以朝著一定的方向。
3.
曲率(Curvature)
--
描述紋路方向改變的速度。
4.
位置(Position)
--
節點的位置通過(x,y)坐標來描述,可以是絕對的,也可以是相對於三角點或特徵點的。

『叄』 指紋識別是什麼原理呢

本來想自己寫的,但是要說的太多了,乾脆找找COPY一個。你還有什麼不明白的可以直接問我,我就是做這個行業的。

手指上的指紋表徵了一個人的身份特徵。1788年Mayer首次提出沒有兩個人的指紋完全相同,1823年Purkinie首次把指紋紋形分成9類,1889年Henry提出了指紋細節特徵識別理論,奠定了現代指紋學的基礎。但採用人工比對的方法,效率低、速度慢。20世紀60年代,開始用計算機圖像處理和模式識別方法進行指紋分析,這就是自動指紋識別系統(簡稱AFIS)[1]。20世紀70年代末80年代初,刑事偵察用自動指紋識別系統(police�AFIS,P�AFIS)投入實際運用。20世紀90年代,AFIS進入民用,稱為民用自動指紋識別系統(civil�AFIS,C�AFIS)。本文試圖從指紋特徵分析著手,闡述指紋作為人體身份識別的原理方法、指紋識別的主要技術指標和測試方法,以及實際應用的現實性與可靠性[2-4]。

1 指紋識別的原理和方法

1.1 指紋的特徵與分類
指紋識別學是一門古老的學科,它是基於人體指紋特徵的相對穩定與唯一這一統計學結果發展起來的。實際應用中,根據需求的不同,可以將人體的指紋特徵分為:永久性特徵、非永久性特徵和生命特徵[5]。
永久性特徵包括細節特徵(中心點、三角點、端點、叉點、橋接點等)和輔助特徵(紋型、紋密度、紋曲率等元素),在人的一生中永不會改變,在手指前端的典型區域中最為明顯,分布也最均勻[1]。細節特徵是實現指紋精確比對的基礎,而紋形特徵、紋理特徵等則是指紋分類及檢索的重要依據。人類指紋的紋形特徵根據其形態的不同通常可以分為「弓型、箕型、斗型」三大類型,以及「孤形、帳形、正箕形、反箕形、環形、螺形、囊形、雙箕形和雜形」等9種形態[1]。紋理特徵則是由平均紋密度、紋密度分布、平均紋曲率、紋曲率分布等紋理參數構成。紋理特徵多用於計算機指紋識別演算法的多維分類及檢索。
非永久性特徵由孤立點、短線、褶皺、疤痕以及由此造成的斷點、叉點等元素構成的指紋特徵,這類指紋有可能產生、癒合、發展甚至消失[1]。
指紋的生命特徵與被測對象的生命存在與否密切相關。但它與人體生命現象的關系和規律仍有待進一步認識。目前它已經成為現代民用指紋識別應用中越來越受關注的熱點之一。

1.2 指紋識別的原理和方法
指紋識別技術主要涉及四個功能:讀取指紋圖像、提取特徵、保存數據和比對。通過指紋讀取設備讀取到人體指紋的圖像,然後要對原始圖像進行初步的處理,使之更清晰,再通過指紋辨識軟體建立指紋的特徵數據。軟體從指紋上找到被稱為「節點」(minutiae)的數據點,即指紋紋路的分叉、終止或打圈處的坐標位置,這些點同時具有七種以上的唯一性特徵。通常手指上平均具有70個節點,所以這種方法會產生大約490個數據。這些數據,通常稱為模板。通過計算機模糊比較的方法,把兩個指紋的模板進行比較,計算出它們的相似程度,最終得到兩個指紋的匹配結果[5-6]。採集設備(即取像設備)分成幾類:光學、半導體感測器和其他。

2 指紋識別技術的主要指標和測試方法

2.1 演算法的精確度

指紋識別系統性能指標在很大程度上取決於所採用演算法性能。為了便於採用量化的方法表示其性能,引入了下列兩個指標。
拒識率(false rejection rate,FRR):是指將相同的指紋誤認為是不同的,而加以拒絕的出錯概率。FRR=(拒識的指紋數目/考察的指紋總數目)×100%。
誤識率(false accept rate,FAR):是指將不同的指紋誤認為是相同的指紋,而加以接收的出錯概率。FAR=(錯判的指紋數目/考察的指紋總數目)×100%。
對於一個已有的系統而言,通過設定不同的系統閾值,就可以看出這兩個指標是互為相關的,FRR與FAR成反比關系。這很容易理解,「把關」越嚴,誤識的可能性就越低,但是拒識的可能性就越高。

2.2 誤識率和拒識率的測試方法
測試這兩個指標,通常採用循環測試方法[7]。即給定一組圖像,然後依次兩兩組合,提交進行比對,統計總的提交比對的次數以及發生錯誤的次數,並計算出出錯的比例,就是FRR和FAR。針對FAR=0.0001%的指標,應採用不少於1 415幅不同的指紋圖像作循環測試,總測試次數為1 000 405次,如果測試中發生一次錯誤比對成功,則FAR=1/1 000 405;針對FRR=0.1%,應採用不少於46幅屬於同一指紋的圖像組合配對進行測試,則總提交測試的次數為1 035次數,如果發生一次錯誤拒絕,則FRR=1/1 035。測試所採用的樣本數越多,結果越准確。作為測試樣本的指紋圖像應滿足可登記的條件。

2.3 系統參數
拒登率(error registration rate,ERR):指的是指紋設備出現不能登錄及處理的指紋的概率,ERR過高將會嚴重影響設備的使用范圍,通常要求小於1%。
登錄時間:指紋設備登錄一枚指紋所需的時間,通常單次登錄的時間要求不超過2 s。
比對時間:指紋設備對兩組指紋特徵模版進行比對所耗費的時間,通常要求不超過1 s。
工作溫度:指紋設備正常工作時所允許的溫度變化范圍,一般是0~40 ℃。
工作濕度:指紋設備正常工作時所允許的相對濕度變化范圍,一般是30%~95%。

3 指紋識別技術的應用
指紋識別技術已經成熟,其應用日益普遍,除了刑事偵察用之外,在民用方面已非常廣泛,如指紋門禁系統、指紋考勤系統、銀行指紋儲蓄系統、銀行指紋保管箱、指紋醫療保險系統、計劃生育指紋管理系統、幼兒接送指紋管理系統、指紋獻血管理系統、證券交易指紋系統、指紋槍械管理系統、智能建築指紋門禁管理系統、駕駛員指紋管理系統等。
指紋門禁系統和指紋考勤系統是開發和使用得最早的一種出入管理系統,包括對講指紋門禁、聯機指紋門禁、離線指紋門禁等等。在入口將個人的手指按在指紋採集器上,系統將已登錄在指紋庫中的指紋(稱為已經注冊)進行對比,如果兩者相符(即匹配),則顯示比對成功,門就自動打開。如不匹配,則顯示「不成功」或「沒有這個指紋」,門就不開。在指紋門禁系統中,可以是一對一的比對(one�to�one matching),也可以是一對幾個比對(one�to�few matching)。前者可以是一個公司、部門,後者可以是一個家庭的成員、銀行的營業廳、金庫、財務部門、倉庫等機要場所。在這些應用中,指紋識別系統將取代或者補充許多大量使用照片和ID系統。
把指紋識別技術同IC卡結合起來,是目前最有前景的一個應用之一。該技術把卡的主人的指紋(加密後)存儲在IC卡上,並在IC卡的讀卡機上加裝指紋識別系統,當讀卡機閱讀卡上的信息時,一並讀入持卡者的指紋,通過比對就可以確認持卡者是否是卡的真正主人,從而進行下一步的交易。指紋IC卡可取代現行的ATM卡、製造防偽證件等。ATM卡持卡人可不用密碼,避免老人和孩子記憶密碼的困難。

近年來,互聯網帶給人們方便與利益已,也存在著安全問題。指紋特徵數據可以通過電子郵件或其它傳輸方法在計算機網路上進行傳輸和驗證,通過指紋識別技術,限定只有指定的人才能訪問相關的信息,可以極大地提高網上信息的安全性。網上銀行、網上貿易、電子商務等一系列網路商業行為就有了安全性保障。
指紋社會保險系統的應用為養老金的准確發放起了非常有效的作用。避免了他人用圖章或身份證復印件代領,而發放人員無法確定該人是故世的問題,要憑本人的活體指紋,才可准確發放養老金。

4 指紋識別的可靠性
指紋識別技術是成熟的生物識別技術。因為每個人包括指紋在內的皮膚紋路在圖案、斷點和交叉點上各不相同,是唯一的,並且終生不變。通過他的指紋和預先保存的指紋進行比較,就可以驗證他的真實身份。自動指紋識別是利用計算機來進行指紋識別的一種方法。它得益於現代電子集成製造技術和快速而可靠的演算法理論研究。盡管指紋只是人體皮膚的一小部分,但用於識別的數據量相當大,對這些數據進行比對是需要進行大量運算的模糊匹配演算法。利用現代電子集成製造技術生產的小型指紋圖像讀取設備和速度更快的計算機,提供了在微機上進行指紋比對運算的可能。另外,匹配演算法可靠性也不斷提高。因此,指紋識別技術己經非常簡單實用。由於計算機處理指紋時,只是涉及了一些有限的信息,而且比對演算法並不是十分精確匹配,其結果也不能保證100%准確。

指紋識別系統的特定應用的重要衡量標志是識別率。主要包括拒識率和誤識率,兩者成反比關系。根據不同的用途來調整這兩個值。盡管指紋識別系統存在著可靠性問題,但其安全性也比相同可靠性級別的「用戶ID+密碼」方案的安全性要高得多。拒識率實際上也是系統易用性的重要指標。在應用系統的設計中,要權衡易用性和安全性。通常用比對兩個或更多的指紋來達到不損失易用性的同時,極大提高系統的安全性。

『肆』 指紋識別是怎麼進行的

導語:指紋識別技術通常使用指紋的總體特徵如紋形、三角點等來進行分類,再用局部特徵如位置和方向等來進行用戶身份識別。盡管指紋只是人體皮膚的小部分,但是,它蘊涵著大量的信息。那麼,接下來就讓我們一起來具體的了解以下關於指紋識別是怎麼進行的內容吧。文章僅供大家的參考!

指紋識別是怎麼進行的

1.指紋圖像的獲取

指紋圖像的採集是自動指紋識別系統的重要組成部分。早期的指紋採集都是通過油墨按壓在紙張上產生的。20世紀80年代,隨著光學技術和計算機技術的發展,現代化的採集設備開始出現。

感測器是一種能把物理量或化學量變成便於利用的電信號的器件。在測量系統中它是一種前置部件,它是被測量信號輸入後的第一道關口,是生物認證系統中的採集設備。

這些感測器根據探測對象的不同,可分為光學感測器、熱敏感測器和超聲感測器;根據器件的不同,可分為CMOS器件感測器和CCD器件感測器。它們的工作原理都是:將生物特徵經過檢測後轉化為系統可以識別的圖像信息。在生物認證系統中,可靠和廉價的'圖像採集設備是系統運行正常、可靠的關鍵。

2.指紋圖像的增強

常見的預處理方法如下:

(1)採用灰度的均衡化,可以消除不同圖像之間對比度的差異。

(2)使用簡單的低通濾波消除斑點雜訊、高斯雜訊。

(3)計算出圖像的邊界,進行圖像的裁剪,這樣可以減少多餘的計算量,提高系統的速度。

常用圖像增強演算法具體包括以下幾種:

(1)基於傅里葉濾波的低質量指紋增強演算法;

(2)基於Gabor濾波的增強方法;

(3)多尺度濾波方法;

(4)改進的方向圖增強演算法;

(5)基於知識的指紋圖像增強演算法;

(6)非線性擴散模型及其濾波方法;

(7)改進的非線性擴散濾波方法。

目前最新的分割演算法有以下幾種:

(1)基於正態模型進行的指紋圖像分割演算法;

(2)基於馬爾科夫隨機場的指紋圖像分割演算法;

(3)基於數學形態學閉運算的灰度方差法;

(4)基於方向場的指紋圖像分割演算法。

3.指紋特徵的提取

近年來,新的指紋特徵提取演算法主要包括以下幾種:

(1)基於Gabor濾波方法對指紋局部特徵的提取演算法。

(2)基於CNN通用編程方法對指紋特徵的提取演算法。

(3)基於IFS編碼的圖像數字化技術,即建立IFS模型,計算源圖像與再生圖像之間的相似性,快速提取指紋圖像的特徵。

(4)基於脊線跟蹤的指紋圖像特徵點提取演算法。該演算法可以直接從灰度指紋圖像中有效提取細節點和脊線骨架信息。

(5)基於小波變換和ART(自適應共振理論)神經網路的指紋特徵提取演算法。

4.指紋圖像的分類與壓縮

常用的指紋分類技術有以下幾種:

(1)基於規則的方法,即根據指紋奇異點的數目和位置分類。

(2)基於句法的方法。這種方法的語法復雜,推導語法的方法復雜、不固定。這種方法已經逐漸被淘汰了。

(3)結構化的方法,即尋找低層次的特徵到高層次的結構之間相關聯的組織。

(4)統計的方法。

(5)結合遺傳演算法和BP神經元網路的方法。

(6)多分類器方法。

常用的壓縮演算法有以下兩種:

(1)圖像壓縮編碼方法:包括無損壓縮(熵編碼)和有損壓縮(量化)。

(2)基於小波變換的指紋壓縮演算法:包括WSQ演算法、DjVu演算法、改進的EZW演算法等。

5.指紋圖像的匹配

傳統的指紋匹配演算法有很多種:

(1)基於點模式的匹配方法:如基於Hough變換的匹配演算法、基於串距離的匹配演算法、基於N鄰近的匹配演算法等。

(2)圖匹配及其他方法:如基於遺傳演算法的匹配、基於關鍵點的初匹配等。

(3)基於紋理模式的匹配:如PPM匹配演算法等。

(4)混合匹配方法等。

近幾年,又出現了如下新的匹配演算法:

(1)基於指紋分類的矢量匹配。該法首先利用指紋分類的信息進行粗匹配,然後利用中心點和三角點的信息進一步匹配,最後以待識別圖像和模板指紋圖像的中心點為基準點,將中心點與鄰近的36個細節點形成矢量,於是指紋的匹配就轉變為矢量組數的匹配。

(2)基於PKI(Public Key Infrastructure,公鑰基礎設施)的開放網路環境下的指紋認證系統。

(3)實時指紋特徵點匹配演算法。該演算法的原理是:通過由指紋分割演算法得到圓形匹配限制框和簡化計算步驟來達到快速匹配的目的。

(4)一種基於FBI(Federal Bureauof Investigation)細節點的二次指紋匹配演算法。

(5)基於中心點的指紋匹配演算法。該演算法利用奇異點或指紋有效區域的中心點尋找匹配的基準特徵點對和相應的變換參數,並將待識別指紋相對於模板指紋作姿勢糾正,最後採用坐標匹配的方式實現兩個指紋的比對。

『伍』 請教指紋圖像識別中方向場(或方向圖)計算的問題

隨機過程,圖像分割,很多書上的理論都是有自己的缺點有待改進的,以及圖像變換)等知識應該是模式識別的基礎,這個我你看岡薩雷斯的圖像處理這本書,對於模式識別:
我覺得做圖像的,最基本你對圖像處理應該有一定的認識,圖像處理(包括圖像平滑去噪:高等數學,我覺得模式識別領域還是有很多東西可以挖掘的,最優化方法等等,畢竟他不像經典物理學那樣有著固定完善的理論套路,你先學好書本上介紹的基本理論(如貝葉斯決策論,學這些應該不困難,參數和非參數估計等等)學好了這些再去研究這些理論存在的問題。還有就是數學基礎了,於模式識別相關的數學基礎應該有,線性代數。你有數學基礎,概率論。
希望對你有用,圖像銳化,迪達寫的《模式分類》這本書比較權威

『陸』 指紋感測器的工作過程

線性指紋無線感測器獲得指紋圖像的方法包括:1、通過指紋無線感測器順序地捕獲指紋圖像條帶;2、指紋無線感測器把掃描的指紋圖像條帶分成預定的段;3、通過把每一圖像條帶和它的段與下一圖像條帶進行比較,檢測最佳重疊區域;4、計算通過重疊區域的平均圖像過渡的平均值;5、把應用平均圖像過渡值的整個圖像混合到每一圖像條帶。這種感測器獲取指紋的方法通過估算和補償指紋感測器掃描的圖像大大改善了正確識別率,並精確地把圖像復原到原來的圖像。這就是指紋考勤機的工作過程。
指紋感測器可以解決問題:,並自動載入他們的個人資料 。

『柒』 iphone6s指紋識別怎麼用

iphone 6s指紋識別操作方法如下:

1、打開手機主界面,選擇「設置」

『捌』 指紋識別使用什麼原理

指紋識別系統的重要衡量標志是識別率。其主要由兩部分組成,拒判率(FRR)和誤判率(FAR)。正因為如此,權威機構認為,在應用中1%的誤判率就可以接受。FRR實際上也是系統易用性的重要指標。由於FRR和FAR是相互矛盾的,這就使得在應用系統的設計中,要權衡易用性和安全性。下面是我收集整理的指紋識別使用什麼原理,希望對你有幫助。

第一步:指紋是手指末端正麵皮膚上凸凹不平產生的紋路。

盡管指紋只是人體皮膚的小部分,但是,它蘊涵著大量的信息。指紋特徵可分為兩類:總體特徵和局部特徵。總體特徵指那些用人眼直接就可以觀察到的特徵,包括基本紋路圖案、模式區、核心點、三角點、式樣線和紋線等。基本紋路圖案有環形、弓形、螺旋形。局部特徵即指紋上節點的`特徵,這些具有某種特徵的節點稱為特徵點。兩枚指紋經常會具有相同的總體特徵,但它們的局部特徵——特徵點,卻不可能完全相同。指紋上的特徵點,即指紋紋路上的終結點、分叉點和轉折點。

第二步:指紋識別技術通常使用指紋的總體特徵如紋形、三角點等來進行分類,再用局部特徵如位置和方向等來進行用戶身份識別。

通常,首先從獲取的指紋圖像上找到「特徵點」(minutiae),然後根據特徵點的特性建立用戶活體指紋的數字表示——指紋特徵數據(一種單向的轉換,可以從指紋圖像轉換成特徵數據但不能從特徵數據轉換成為指紋圖像)。由於兩枚不同的指紋不會產生相同的特徵數據,所以通過對所採集到的指紋圖像的特徵數據和存放在資料庫中的指紋特徵數據進行模式匹配,計算出它們的相似程度,最終得到兩個指紋的匹配結果,根據匹配結果來鑒別用戶身份。由於每個人的指紋不同,就是同一人的十指之間,指紋也有明顯區別,因此指紋可用於身份鑒定。

第三步:指紋識別技術主要涉及四個功能: 讀取指紋圖像、提取特徵、保存數據和比對:

首先,通過指紋讀取設備讀取人體指紋的圖像,取到指紋圖像之後,要對原始圖像進行預處理。

其次,用指紋辨識軟體建立指紋的數字表示特徵數據,是一種單方向的轉換,可以從指紋轉換成特徵數據但不能從特徵數據轉換成為指紋,而兩枚不同的指紋不會產生相同的特徵數據。軟體從指紋上找到被稱為「節點」的數據點,也就是那些指紋紋路的分叉、終止或打圈處的坐標位置,這些點同時具有七種以上的唯一性特徵。

第三,通常手指上平均具有70個節點,所以這種方法會產生大約500個數據。有的演算法將節點和方向信息組合產生了更多的數據,這些方向信息表明了各個節點之間的關系,也有的演算法還處理整幅指紋圖像。總之,這些數據,通常稱為模板,保存為1KB大小的記錄。

最後,通過計算機模糊比較的方法,把兩個指紋的模板進行比較,計算出它們的相似程度,最終得到兩個指紋的匹配結果。

『玖』 光學指紋跟超聲指紋對屏幕要求

光學指紋跟超聲指紋對屏幕要求一共分三種屏幕指紋,超聲波指紋,光學指紋,電阻指紋。電阻是我們平常見的後置指紋和前置指紋。

光學指紋如果手指有油污,泥污等,那麼光學指紋機就無法准確識別。超聲波指紋機是看的是和手指指紋那一層,如果有油污,泥污等是可以直接穿透看到指紋的真實情況。超聲波指紋的缺點是穿透性有限制。

光學指紋線性指紋無線感測器獲得指紋圖像的方法包括:

1、光學指紋通過指紋無線感測器順序地捕獲指紋圖像條帶。

2、光學指紋指紋無線感測器把掃描的指紋圖像條帶分成預定的段。

3、光學指紋通過把每一圖像條帶和它的段與下一圖像條帶進行比較,檢測最佳重疊區域。

4、光學指紋計算通過重疊區域的平均圖像過渡的平均值。

5、光學指紋把應用平均圖像過渡值的整個圖像混合到每一圖像條帶。

『拾』 從數字圖像處理技術角度談談對指紋識別的認識

這是我自己以前收集的資料 但願能有幫助哈
理論分析與設計

4.1 指紋圖像表示

從指紋感測器輸出的是指紋原始圖像,其數據量比較大。這對整個指紋識別系統的處理和存儲都是個不小的負擔。在遠程採集系統中,對通信帶寬會造成較大負荷。因此需要對指紋圖像進行壓縮存儲。指紋圖像壓縮一般經過圖像變換、量化和編碼等過程。解壓需經過解碼、量化解碼和反變換等過程。

壓縮後的指紋圖像需確保指紋特徵信息的不丟失不損壞。理論上來講採用無損壓縮演算法是最理想的。但經過實踐證明,對於解析度不是很高的指紋圖像來說,採用無損壓縮的壓縮比很低。通常情況下採用JEPG、WSQ和EZW三種壓縮演算法。

4.2 指紋圖像處理

4.2.1 指紋圖像增強

剛獲得的圖象有很多噪音。這主要由於平時的工作和環境引起的。指紋還有一些其他的細微的有用信息,我們要盡可能的使用。指紋圖像增強的目的主要是為了減少噪音,增強嵴峪對比度,使得圖像更加清晰真實,便於後續指紋特徵值提取的准確性.

指紋圖像增強常用的是平滑和銳化處理。

(1)平滑處理

平滑處理是為了讓整個圖像取得均勻一致的明暗效果。平滑處理的過程是選取整個圖像的象素與其周圍灰階差的均方值作為閾值來處理的。這種做法實現的是一種簡單的低通濾波器。

實驗表明:一般的自然圖像相鄰像素的灰度相關性約為0.9。因此在圖像受到白雜訊干擾時,以像素的鄰域平均值代替中心像素,是一個去除雜訊的好辦法。演算法是: 。其中f(x,y)表示被雜訊污染的原始圖像,大小為N*N,g(n,m)是平滑後的圖像,S是處理點(x,y)鄰域中點的坐標(不包括(x,y)點)的集合,而M是集合S內坐標點的總數。例如,以(x,y)點為中心,取單位距離構成的鄰域,其中點的坐標集合為:s={(x,y+1),(x,y-1),(x+1,y),(x-1,y)}。

經驗表明,鄰域越大,去雜訊的能力就越強,不過,從中也可以看出,鄰域越大,圖像就越模糊。因此,需要尋找既可以去雜訊,又可以保持圖像清晰度的辦法,這就是閥值方法,演算法是: ,其中T值是一個規定的非負閥值。只有當變化較大時(大於T),圖像才進行鄰域濾波;而當變化不明顯時,仍然保留原先的值,這樣可以減少圖像的模糊。

當被處理點為邊界點時,鄰域平均後該點的灰度迅速下降,這樣就導致邊界模糊。修改方案是根據參與平均的像素的特點賦予不同的權值,即採用加權平均法: ,其中w(n,m)是加權系數。

可以根據圖像的相關性,按照以下的方法確定權值:

a:給當前處理的中心像素較大的權值,其他像素的權值較小。

b:按兩像素間的距離確定權值,距離處理像素近的權值較大,距離處理像素較遠的權值小。

c:按和被處理像素的灰度接近程度確定權值,約接近的權值越大。

下面是幾個按照以上思路設計的典型的加權平均運算元。為了不使整個圖像的亮度變亮,設計此類運算元的時候需要將權值歸一化。

A:中心加權運算元。

B:中心和四鄰點加權運算元。

C:按灰度近似程度加權運算元。

其中:

綜合以上討論可以看出:

A:平滑濾波器就是一種低通濾波器,模板的所有系數都是正數。

B:在設計濾波器時通常還要求行列數為奇數,保障中心定位性能。

C:空域低通濾波的去噪能力與它的模板大小有關,模板越大,去噪能力越強。

D:空域低通濾波具有平滑的效果,在去除雜訊的同時模糊了圖像邊緣和細節。

(2)銳化處理

銳化和平滑恰恰相反,它是通過增強高頻分量來減少圖象中的模糊,因此又稱為高通濾波。銳化處理在增強圖象邊緣的同時增加了圖象的雜訊。銳化技術可分為空域和時域兩種手段,空域的基本方法是微分處理,頻域技術是運用高通濾波。

圖像處理中最常用的微分方法是計算梯度。給定義一個函數f(x,y),在坐標f(x,y)在f的梯度定義為一個矢量G[f(x,y)]:

梯度G[f(x,y)]是函數f(x,y)最大增加率的方向,梯度矢量的幅度(梯度的模)為: ,其中 表示在矢量方向上每單位距離f(x,y)的最大值,通常用來表示f的梯度。

最常用的是Laplacian運算元,即對圖象進行二階微分的計算:

。可以看出,它是個標量,具有各向同性的性質。

典型的Laplacian模板及其變形模板如下圖所示。這三個模板在形式上有些區別,增強能力也不同,但都體現了二階微分的特徵。

4.2.2指紋圖像二值化

在原始灰階圖像中,各象素的灰度是不同的,並按一定的梯度分布。在實際處理中只需要知道象素是不是嵴線上的點,而無需知道它的灰度。所以每一個象素對判定嵴線來講,只是一個「是與不是」的二問題。所以,指紋圖像二值化是對每一個象素點按事先定義的閾值進行比較,大於閾值的,使其值等於1(假定),小於閾值的,使其值等於0。圖像二值化後,不僅可以大大減少數據量,而且使後面的處理過程少受干擾,大大簡化其後的處理。

4.2.3指紋圖像細化

圖像細化就是將嵴的寬度降為單個像素的寬度,得到嵴線的骨架圖像的過程。這個過程進一步減少了圖像數據量,清晰化了嵴線形態,為之後的特徵值提取作好准備。由於我們所關心的不是嵴線的粗細,而是嵴線的有無。因此,在不破壞圖像連通性的情況下必須去掉多餘的信息。因而應先將指紋嵴線的寬度採用逐漸剝離的方法,使得嵴線成為只有一個象素寬的細線,這將非常有利於下一步分析。

4.3 指紋特徵值提取

A:指紋特徵值

指紋特徵值是指紋演算法的基礎數據,是指紋演算法最重要的數據結構。不論是特徵點匹配演算法,還是線對或點集匹配演算法,都是指紋演算法程序中最核心的數據結構。指紋特徵值模板一定程度影響著指紋演算法的效率和精度,體現了演算法的優劣。一個好的特徵值模板能用最小的數據量表示最多的指紋特徵信息,能用最少的特徵點信息,區分出兩個指紋的不同。

B:提取

指紋特徵值提取是對指紋的特徵信息(總體和局部的)進行選擇、編碼,形成二進制數據的過程。指紋特徵點的提取方法是指紋演算法的核心。一般採用8鄰域法對二值化、細化後的指紋圖像抽取特徵點,這種方法將嵴上的點用"1"表示,峪(背景)用"0"表示,將待測點(i,j)的八鄰域點進行循環比較,若"0","1"變化有六次,則此待測點為分叉點,若變化兩次,則為端點。通過這個過程可以記錄下來指紋的所有特徵點。

通常一個指紋的特徵點在100~150之間,在形成指紋特徵值模板(也就是特徵值的有序集合)時,盡量多的提取特徵點對於提高准確性是有很大幫助的。

閱讀全文

與手機指紋圖像計算方法相關的資料

熱點內容
乳腺癌治療方法及中葯 瀏覽:552
老年人駝背有什麼方法治療 瀏覽:742
圖片批量重命名編號的方法 瀏覽:283
目前測量兒童發育最常用的方法 瀏覽:437
重鏈沉積病最新治療方法 瀏覽:5
斑禿怎麼治療方法好 瀏覽:936
如何做香乾好吃的方法 瀏覽:507
室外管道連接的方法 瀏覽:471
西紅柿盆栽種植方法 瀏覽:795
綠植牆怎麼製作方法 瀏覽:179
如何培養孩子認識字的方法 瀏覽:351
小天鵝冰箱門拆卸安裝方法 瀏覽:495
在教學方法的運用過程中 瀏覽:917
鬆手剎的正確方法 瀏覽:774
芋頭怎麼煎好吃又簡單的方法 瀏覽:362
計算用電器電功率的簡便方法 瀏覽:657
幼兒舞蹈教學方法示範 瀏覽:452
用菜籽油炸薯片要用簡便的方法 瀏覽:527
提魚方法視頻教程 瀏覽:850
記憶拼貼的訓練方法 瀏覽:62