導航:首頁 > 計算方法 > 長度相加減的計算方法

長度相加減的計算方法

發布時間:2022-11-21 03:21:42

① 長度單位加減法怎麼計算

單位相同的直接把數據相加減,得數後面寫上單位名稱。
單位不同的,先化成相同單位名稱的數據,再相加減,得數後面寫上化後的單位名稱。

② 1.5米和1.2米相差多少厘米

1.5米和1.2米相差30厘

計算方法:單位相同,直接相加減;單位不同先變相同,相同之後再相加減

常用長度單位進率換算:

即:1.5米=150厘米

1.2米=120厘米

相差=1.5米-1.2米

=150厘米-120厘米

=30厘米

常用長度單位進率換算:

1千米=1000米,1千米=10000分米,1千米=100000厘米,1千米=1000000毫米;

1米=10分米,1米=100厘米,1米=1000毫米;

1分米=10厘米,1分米=100毫米;

1厘米=10毫米;

③ 小學數學長度,公里,體積,公式表

小學數學單位換算大全

◆長度單位換算
1千米=1000米 1米=10分米1分米=10厘米
1米=100厘米1厘米=10毫米
◆面積單位換算
1平方千米=100公頃1公頃=10000平方米
1平方米=100平方分米1平方分米=100平方厘米
1平方厘米=100平方毫米
◆體(容)積單位換算
1立方米=1000立方分米1立方分米=1000立方厘米
1立方厘米=1毫升1立方分米=1升1立方米=1000升
◆重量單位換算
1噸=1000千克1千克=1000克1千克=1公斤
◆人民幣單位換算
1元=10角1角=10分1元=100分
◆時間單位換算
1世紀=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,閏年2月29天
平年全年365天,閏年全年366天
1日=24小時1時=60分
1分=60秒1時=3600秒
◆小學數學幾何形體周長面積體積計算公式
1、長方形的周長=(長+寬)×2C=(a+b)×2
2、正方形的周長=邊長×4C=4a
3、長方形的面積=長×寬S=ab
4、正方形的面積=邊長×邊長S=a.a=a
5、三角形的面積=底×高÷2S=ah÷2
6、平行四邊形的面積=底×高S=ah
7、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2
8、直徑=半徑×2d=2r半徑=直徑÷2r=d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2c=πd=2πr
10、圓的面積=圓周率×半徑×半徑
◆定義定理公式
三角形的面積=底×高÷2。公式S=a×h÷2
正方形的面積=邊長×邊長公式S=a×a
長方形的面積=長×寬 公式S=a×b
平行四邊形的面積=底×高 公式S=a×h
梯形的面積=(上底+下底)×高÷2 公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。 公式:V=Sh
圓錐的體積=1/3底面×積高。 公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數

④ 長度之間相加減的計算方法是什麼

長度減長度或者是長度加長度,長度乘長度或者是長度除長度。

⑤ 計算多位數相加減的方法

加法:先從個位加起,逢十進一,在到十位,百位,以此類推得出最後結果。
減法:先從個位減起,不夠向十位借一在減,十位減少一;在到十位,以此類推

⑥ 長度之間相加減的計算方法是什麼

計算方法就是單位統一相加減。

⑦ 計算長度時 只有相同的什麼單位才能相加減

只要是相同的長度單位,都可以相加減。
1、例如:10米+5米=15米
22米-8米=14米
2、不同的長度單位不能簡單的加減,要化成相同的單位,再進行數字運算

⑧ 小學長度公式

體積和表面積
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh

算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c

分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數

長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤


什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的化發。

倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。
奇數與偶數
偶數:個位是0,2,4,6,8的數。
奇數:個位不是0,2,4,6,8的數。
偶數±偶數=偶數 奇數±奇數=奇數 奇數±偶數=奇數
偶數個偶數相加是偶數,奇數個奇數相加是奇數。
偶數×偶數=偶數 奇數×奇數=奇數 奇數×偶數=偶數
相臨兩個自然數之和為奇數,相臨自然數之積為偶數。
如果乘式中有一個數為偶數,那麼乘積一定是偶數。
奇數≠偶數

整除
如果c|a, c|b,那麼c|(a±b)
如果,那麼b|a, c|a
如果b|a, c|a,且(b,c)=1, 那麼bc|a
如果c|b, b|a, 那麼c|a

小數
自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
純小數:個位是0的小數。
帶小數:各位大於0的小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如3. 141592654
無限循環小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限循環小數。如3. 141414……

無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……

利潤
利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

⑨ 整數、小數加法、減法的計算方法各是什麼

整數,小數加法,減法的計算方法是一樣的。都是相同數位上的數字相加減,在豎式計算時,把相同數位對齊,小數就把小數點對齊,然後相同數位相另即可。

⑩ 整數和分數相加減怎麼算謝謝

先把整數通分化成分數再相加減。

舉例說明如下:

1、加法:1+1/3

整數1可以寫成任何分子分母相同的分數,分母0除外,由此可得:

1+1/3=3/3+1/3=4/3。

2、減法:1-1/11

樣先把1通分成分母11的分數,即11/11,由此可得:

1-1/11=11/11-1/11=10/11。

(10)長度相加減的計算方法擴展閱讀

分數化成小數 :分子就是被除數,分母就是除數,然後相除就可以了能除盡的除盡,除不盡的可以保留幾位小數。

小數化分數:看小數點後面有幾位小數,就在1後面添幾個0作分母,同時把小數去掉小數點作分子,然後能約分的要約分。

分數化小數指將分數通過一定的法則化為小數的運算。

分數化小數可分為三種情況:

1、分數化為有限小數。一個最簡分數能化為有限小數的充分必要條件是分母的質因數只有2和5。

2、分數化為純循環小數。一個最簡分數能化為純循環小數的充分必要條件是分母的質因數里沒有2和5,其循環節的位數等於能被該最簡分數的分母整除的最小的99…9形式的數中9的個數。

3、分數化為混循環小數。一個最簡分數能化為混循環小數的充分必要條件是分母既含有質因數2或5,又含有2和5以外的質因數。

化成的混循環小數中,不循環的位數等於分母里的因素2或5的指數中較大的一個;循環節的位數,等於能被分母中異於2,5的因子整除的最小的99…9形式的數中,數9的個數。

閱讀全文

與長度相加減的計算方法相關的資料

熱點內容
每個模塊那麼多方法如何記 瀏覽:4
巰基乙酸單甘油酯檢測方法 瀏覽:145
尖銳疣治療的方法 瀏覽:798
使用什麼方法解決 瀏覽:800
搓澡神器使用方法 瀏覽:386
閉角青光眼後期治療方法 瀏覽:722
清洗瓷磚方法有哪些 瀏覽:555
汽車漆面劃痕有什麼補救方法 瀏覽:759
快速洗紋身方法 瀏覽:977
女性夜尿多鍛煉方法 瀏覽:442
福美鈉的檢測方法 瀏覽:465
紅花生和紅醋泡的食用方法 瀏覽:410
簡述分析方法驗證的效能指標 瀏覽:677
腦梗最好的治療方法 瀏覽:557
貴州正宗酸湯的製作方法去哪裡學 瀏覽:326
中葯炮製清除雜質的方法有哪些 瀏覽:873
老君威更換電腦匹配方法 瀏覽:100
肺的早期腺癌怎麼治療方法 瀏覽:23
格力中央安裝方法 瀏覽:469
編織鏤空花的方法視頻 瀏覽:55