導航:首頁 > 計算方法 > 六年級復習計算方法

六年級復習計算方法

發布時間:2022-10-31 20:06:23

1. 六年級簡便運算的技巧和方法是什麼

綜述,六年級簡便運算的技巧和方法有提取公因式、借來借去法、拆分法和乘法分配律結、利用基準數、利用公式法、裂項法等等。

一、提取公因式

這個方法實實際是運用子乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。

例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)

二、借來借去法

考試中有看到998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。還要注意還,有借有還,再借不難。

例如:9999+999+99+9=9999+1+999+1+99+1+9+1-4

三、拆分法和乘法分配律結

這種方法要靈活掌握拆分法和乘法分配律,看到99、101、9.8等接近一個整數的時候,首先考慮拆分。

例如:34×9.9=34×(10-0.1)

四、利用基準數

在一系列數中找出一個折中的數字來代表這一系列的數字,當然要記得這一數字的選擇不能偏離這一系列數字太遠。

例如:2072+2052+2062+2042+2083=(2062×5)+10-10-20+21

五、利用公式法

(1)加法交換律:兩數相加交換加數的位置,和不變。

(2)加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。

(3)乘法交換律:兩數相乘,交換因數的位置,積不變。

(4)乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。

(5)乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。

(6)除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。

六、裂項法

分數裂項是指將分數版式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱這國裂項法。

如:1/[n(n+1)]=(1/n)-[1/(n+1)]

1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]

1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}

2. 求好的復習方法,六年級的。要數學的

一、制定切實可行的復習計劃,並認真執行計劃。為使復習具有針對性,目的性和可行性,找准重點、難點,課程標準是復習依據,教材是復習的藍本。復習時要弄清學習中的難點、疑點及各知識點易出錯的原因,這樣做到復習有針對性,可收到事半功倍的效果。
二、分類整理、梳理,強化復習的系統性。復習的重要特點就是在系統原理的指導下,對所學知識進行系統的整理,使之形成一個較完整的知識體體系,這樣有利於知識的系統化和對其內在聯系的把握,便於融合貫通。做到梳理訓練拓展,有序發展,真正提高復習的效果。
三、辨析比較,區分弄清易混概念。對於易混淆的概念,首先抓住意義方面的比較,再者是對易混概念的分析,這樣能全面把握概念的本質,避免不同概念的干擾,另外對易混的方法也應進行比較,以明確解題方法。
四、一題多解,多題一解,提高解題的靈活性。有些題目,可以從不同的角度去分析,得到不同的解題方法。一題多解可以培養分析問題的能力和靈活解題的能力。不同的解題思路,列式不同,結果相同,收到殊途同歸的效果。有些應用題,雖題目形式不同,但它們的解題方法是一樣的,故在復習時,要從不同的角度去思考,要對各類習題進行歸類,這樣才能使所所學知識融會貫通,提高解題靈活性。
五、有的放矢,挖掘創新。機械的重復,什麼都講,什麼都練是復習大忌,復習一定要有目的,有重點,要對所學知識歸納,概括。習題要具有開放性,創新性,使思維得到充分發展,要正確評估自己,自覺補缺查漏,面對復雜多變的題目,嚴密審題,弄清知識結構關系和知識規律,發掘隱含條件,多思多找,得出自己的經驗。

3. 人教版六年級數學的知識點總結

知識是一座寶庫,而實踐就是開啟寶庫的鑰匙。學習任何學科,不僅需要大量的記憶,還需要大量的練習,從而達到鞏固知識的效果。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

小學六年級數學下冊知識點:比例

1.理解比例的意義和基本性質,會解比例。

2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。

3.認識正比例關系的圖像,能根據給出的有正比例關系的數據在有坐標系的方格紙上畫出圖像,會根據其中一個量在圖像中找出或估計出另一個量的值。

4.了解比例尺,會求平面圖的比例尺以及根據比例尺求圖上距離或實際距離。

5.認識放大與縮小現象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。

6.滲透函數思想,使學生受到辯證唯物主義觀點的啟蒙 教育 。

7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:

8.組成比例的四個數,叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內項。

9.比例的性質:在比例里,兩個外項的積等於兩個兩個內向的積。這叫做比例的基本性質。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

10.解比例:根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例中的另外一個未知項。

求比例中的未知項,叫做解比例。

例如:3:x=4:8,內項乘內項,外項乘外項,則:4x=3×8,解得x=6。

11.正比例和反比例:

(1)成正比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。用字母表示y/x=k(一定)

例如:

①速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。

②圓的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定)。

③圓的面積和半徑不成比例,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。

④y=5x,y和x成正比例,因為:y÷x=5(一定)。

⑤每天看的頁數一定,總頁數和天數成正比例,因為:總頁數÷天數=每天看頁數(一定)。

(2)成反比例的量:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。

用字母表示x×y=k(一定)

例如:①、路程一定,速度和時間成反比例,因為:速度×時間=路程(一定)。

②總價一定,單價和數量成反比例,因為:單價×數量=總價(一定)。

③長方形面積一定,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。

④40÷x=y,x和y成反比例,因為:x×y=40(一定)。

⑤煤的總量一定,每天的燒煤量和燒的天數成反比例,因為:每天燒煤量×天數=煤的總量(一定)。

12.圖上距離:實際距離=比例尺;

例如:圖上距離2cm,實際距離4km,則比例尺為2cm:4km,最後求得比例尺是1:200000。

13.實際距離=圖上距離÷比例尺;

例如:已知圖上距離2cm和比例尺,則實際距離為:2÷1/200000=400000cm=4km。

14.圖上距離=實際距離×比例尺;

例如:已知實際距離4km和比例尺1:200000,則圖上距離為:400000×1/200000=2(cm)

數學知識點六年級

運演算法則

1. 整數加法計演算法則:

相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。

2. 整數減法計演算法則:

相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。

3. 整數乘法計演算法則:

先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。

4. 整數除法計演算法則:

先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。

5. 小數乘法法則:

先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。

6. 除數是整數的小數除法計演算法則:

先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。

7. 除數是小數的除法計演算法則:

先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。

8. 同分母分數加減法計算 方法 :

同分母分數相加減,只把分子相加減,分母不變。

9. 異分母分數加減法計算方法:

先通分,然後按照同分母分數加減法的的法則進行計算。

10. 帶分數加減法的計算方法: 整數部分和分數部分分別相加減,再把所得的數合並起來

小學六年級 數學 學習方法

1、利用生活中的數學體現,激發孩子內在的學習動機

數學貫穿與日常生活,家長可在與孩子的日常生活接觸中觀察孩子的喜好,融入數學思維引導孩子主動學習。並有意識地進行思考、猜想、討論與動手動腦等,利用孩子感興趣喜歡的元素作為數學思維的承擔載體,激發孩子內在的學習動機,使孩子感受到相互學的重要和有趣,使他們對數學學習更加主動積極。

2、抓住數學敏感期,循序漸進,發展數學思維

研究證明, 兒童 在4歲前後會出現一個「數學敏感期」。他們會對數字概念,比如數、數字、數量關系、排列順序、數運算、形體特徵等突然發生極大興趣,對它們的種種變化有著強烈的求知慾,這標志著孩子的數學敏感期到來了。錯過了這個「數學敏感期」,有的人一生都害怕數學,一提數學就頭疼。

而在面對「數學」這種純抽象概念的知識時,讓孩子覺得容易的學習方法,也只有以具體、簡單的實物為起始。由感官的訓練,從「量」的實際體驗,到「數」的抽象認識。自少到多,進入加、減、乘、除的計算,逐漸培養孩子的數學心智和分析整合的邏輯概念。讓孩子在親自動手中,先由對實物的多與少、大和小,求得了解,在自然而然地聯想具體與抽象間的關系。

3、討論合作,共同發散數學思維

每個孩子都有其獨特的天馬行空的思維能力,在學校學習中,就可以藉助這種思維的差異性,讓孩子參與到團隊合作中來,共同堆一座積木或進行 折紙 游戲,共同探討知識交流合作,利用空間思維與多彩豐富的具象結合,在互助交流中動手動腦、 發散思維 的同時建構自己的 經驗 和知識,參與到團隊合作中來,有助於語言能力的增強,形成自己的認知結構和思維系統。

孩子在小時候以形象思維為主,喜歡把一切抽象問題都形象化,但這不利於 抽象思維 的培養,那麼培養孩子良好的思維習慣就很重要,具體到數學思維,就是要培養孩子及時 總結 分析問題和解決問題的方法,按步思維,有意識的逐步培養孩子的抽象思維能力和思維品質,加強訓練。


人教版六年級數學的知識點總結相關 文章 :

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學知識點總結

★ 六年級數學上冊知識點總結

★ 小學六年級數學學習方法和技巧大全

★ 六年級上冊數學人教版知識點

★ 六年級上冊數學知識點整理歸納

★ 人教版六年級數學下冊知識要點

★ 六年級上冊數學課本知識點歸納

★ 六年級上冊數學知識點總結

★ 六年級數學上冊知識點復習

4. 六年級數學基礎知識點總結

學習從來無捷徑,循序漸進登高峰。如果說學習一定有捷徑,那隻能是勤奮,因為努力永遠不會騙人。學習需要勤奮,做任何事情都需要勤奮。下面是我給大家整理的一些 六年級數學 的知識點,希望對大家有所幫助。

小學六年級數學總復習知識點:數的互化

1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。

2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。

3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。

4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。

5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。

7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。

六年級數學知識點:圖形計算公式

1、正方形 (C:周長 S:面積 a:邊長)

周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a

2、正方體 (V:體積 a:棱長 )

表面積=棱長×棱長×6 S表=a×a×6

體積=棱長×棱長×棱長 V=a×a×a

3、長方形( C:周長 S:面積 a:邊長)

周長=(長+寬)×2 C=2(a+b)

面積=長×寬 S=ab

4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)

(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)

(2)體積=長×寬×高 V=abh

5、三角形 (s:面積 a:底 h:高)

面積=底×高÷2 s=ah÷2

三角形高=面積 ×2÷底 三角形底=面積 ×2÷高

6、平行四邊形 (s:面積 a:底 h:高)

面積=底×高 s=ah

7、梯形 (s:面積 a:上底 b:下底 h:高)

面積=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)

(1)周長=直徑×л=2×л×半徑 C=лd=2лr

(2)面積=半徑×半徑×л

9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)

(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2

(3)體積=底面積×高 (4)體積=側面積÷2×半徑

圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)

體積=底面積×高÷3

11、總數÷總份數=平均數

12、和差問題的公式

(和+差)÷2=大數 (和-差)÷2=小數

13、和倍問題

和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)

數學 學習 方法 技巧

一、明確教學目標,制訂復習計劃

小學 畢業 班數學總復習知識容量多、時間跨度大,所學知識的遺忘率高,復習之前教師必須再次鑽研教材,進一步了解教材的知識內容和編排特點,還要重新學習《數學課程標准》,把握好教學要點和數學知識重點,並對學生掌握知識的情況全面摸底,然後確定復習目標,制定復習計劃,主要包括:復習的內容要點,分幾節課完成,設計好每節課的內容和目標。例如,制訂「數的運算」這一單元復習計劃:第一節復習四則運算計算方法及其關系,第二節復習運算定律,第三節復習整數小數分數四則混合運算。這樣才能使復習工作有計劃、有步驟地進行,這種邏輯遞進的 復習方法 可以從根本上克服復習的盲目性、隨意性還有簡單地以教材上的復習題為內容,讓學生照書做完了事的思想。

二、了解學情,制定復習方法

俗話說:「知己知彼,百戰不殆」。這句話雖是用於指揮行軍打仗,但細斟此言,筆者認為它同樣適用於指導教學。作為一名有 經驗 的教師,首先要掌握學生一舉一動,一言一行,及時對教學工作作出調整,以減少無效勞動,確保教學活動不偏離預定的教學目標。了解學情的途徑很多,諸如「教學觀察」、「師生談心法」、「開展第二課堂法」等等,老師可在教學實踐中,多留心觀察,多 總結 經驗,多開動腦筋,把多種的方法靈活運用,以期達到對學生的行為,思想情感,學習情況等做到心中有數,從而進行有的放矢的教學工作,提高課堂教學質量。

三、梳理知識,形成知識網路

小學畢業生通過六年的數學學習,大多都掌握了比較可觀的知識點,如果沒有一個清晰的思路來幫助學生,就好比是一堆貨物,品種繁多,堆放零亂,要想記住特別困難。只有加以整理,有序分類,才能清清楚楚,一目瞭然。因此,在復習時應根據知識的重點、學習的難點和學生的薄弱環節,引導學生把已經學的知識進行梳理、分類、整合,弄清它們的來龍去脈,溝通其縱橫聯系,從整體上把握知識結構。引導學生自主整理,促進知識系統化的目的不僅要構建完整的知識網路,還要在構建知識網路的的同時,使學生對以前所學的知識有新的認識、提高。同時,要重視在復習整理過程中培養學生自主整理的意識,發展學生自主學習的能力。復習時,引導學生將知識分塊,系統整理,按塊復習,一塊一塊復習記憶。如果再將每一小類找出共性,規律,記憶效果就會大大加強。將知識分成大類,以表格形式呈現,細化到每一個知識點,逐一復習,鞏固強化達到熟練,運用時,從塊狀知識記憶中調用,速度也可加快。例如空間與圖形部分,筆者給學生搭建了這樣的框架:點、線、面、體。點有:端點、頂點、起點、垂足等;線有直線、射線、線段等;面有長方形、正方形、三角形、平行四邊形、梯形、圓等;體有長方體、正方體、圓柱、圓錐等。每一點知識都有其自身意義和特點,通過這樣的邏輯順利建構了一種復合學生思維規律的知識脈絡,點是構成線的基礎,點可以連成線,線可構成面,面可圍成體,垂線實際就是面和體的高等等。這些知識即單獨存在,也相互聯系,形成一個體系,易於學生系統掌握。


六年級數學基礎知識點總結相關 文章 :

★ 六年級數學期末復習知識點匯總

★ 小學六年級數學知識點總結

★ 小學六年級數學學習方法和技巧大全

★ 六年級上冊數學知識點整理歸納

★ 六年級數學上冊知識點總結

★ 六年級數學幾何的初步知識知識點總結

★ 六年級上冊數學知識點總結

★ 六年級數學上冊知識點復習

★ 小學數學基礎知識點整理

★ 六年級數學的重難點知識總結

5. 六年級上冊數學期末復習資料人教版 和 簡便計算的方法

乘法分配律
簡便計算中最常用的方法是乘法分配律。乘法分配律指的是
a(b+c)=ab+ac其中a,b,c是任意實數。相反的,ab+ac=a(b+c)叫做乘法分配律的逆運用,尤其是a與b互為補數時,這種方法更有用。也有時用到了加法結合律,比如a+b+c,b和c互為補數,就可以把b和c結合起來,再與a相加。如將上式中的+變為*,運用乘法結合律也可簡便計算。 乘法結合律
乘法結合律也是做簡便運算的一種方法,用字母表示為
(a×b)×c=a×(b×c),它的定義(方法)是:三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。 乘法交換律
乘法交換律用於調換各個數的位置:a×b=b×a 其他: 加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)

6. 六年級數學有什麼好的復習方法

你好,我是輔導班的老師,帶了幾個六年級的孩子,下面是個人經驗:
如果孩子每次小考都在95分以上,你不用擔心,孩子自己心裡有數,知道怎麼復習。
如果孩子每次小考成績在80-90分之間,不需要去外面花錢補課,讓他自己做每一章的總結,總結內容包括定義,概念,例題,舉一反三的題,最重要是問問孩子做題的思路是什麼,六年級了,有些題不是一種方法可以解出,試著找出其它解題方法,這對孩子成績提高有幫助。。
如果孩子每次成績都在80分以下,那麼看看題是不是會做,還是考試時明明會做的題,就做不對,不要說是粗心,這就是知識點沒有掌握,哪裡不明白,多做這個類型的題,錯題反復做,不要嫌麻煩。。。計算出錯也是很要命的,小學計算要保證100%全對。才能應對中學的學習。。所以每天保證計算題的量,我一般規定這樣的孩子,每天30分鍾計算,孩子很煩,但是不行,只有多練才能提高。。。
其它有問題再留言。我推薦你一本練習冊,叫典中點。不知道你們那裡是否有賣的,這個練習冊很好,純個人建議。沒有廣告的意思。

7. 小學六年級數學如何復習

可以分快復習。1、計算 2、應用題 3、圖形 4、統計圖表

1、計算。一般計算(基本方法掌握了就行)用不著復習,考試細心就行了,簡便計算哪一類未掌握就復習那一類。
2、應用題就要多練了。練的成次就看自己的水平了。
3、圖形。基本圖形掌握了,重點是組合圖形。
4、統計圖形不難。

8. 六年級簡便計算的竅門和技巧

1.乘法分配律,如果可以簡便的括弧里加某數減某數,括弧外乘某數就把裡面的算式拆開,分別與外面的那個數相乘(外面的也可以是乘多個數)
2.上述做法在除法里也可以應用,但是先要把外面的除某數改成乘以這個數的倒數(這里的知識點是六年級上冊的分數除法)
3.乘法交換律,如果是乘法的話,可以試一試交換分數的分子或分母,除法的話,也可以變成它的倒數試一下(在分數乘法中交換分數的分子或者分母不改變積的大小)
4.乘法分配律的逆運算,看算式中有沒有相同的因數,注意是乘法組,有的話可以把另外兩個不同的因數加或減起來(這里用括弧括上,並且注意兩組乘法算式之間是加還是減)
5.上一條說的也有一種情況,就是會有一個單獨的數存在(注意這里單獨的數指的是他不與任何數相乘,但是他卻是另外兩組或一組乘法算式的那個公因數)這時我們把它看作是乘以了一,也可以括在括弧里進行計算
6.還有就是除了乘法分配律,另外的乘法交換律和乘法結合律也可以在分數乘法計算中應用(當然,加法交換律和加法結合律也是可以的),看哪裡可以約分,就把他們兩個移動到一起計算,注意這里是不是平級運算,不是的話不可以

9. 小學六年級數學總復習資料公式

小學一至六年級數學公式完整版

1、每份數×份數=總數 2、1倍數×倍數=幾倍數
總數÷每份數=份數 幾倍數÷1倍數=倍數
總數÷份數=每份數 幾倍數÷倍數=1倍數

3、速度×時間=路程 4、單價×數量=總價
路程÷速度=時間 總價÷單價=數量
路程÷時間=速度 總價÷數量=單價

5、工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率

6 、加數+加數=和
和-一個加數=另一個加數

7 、被減數-減數=差
被減數-差=減數
差+減數=被減數

8 、因數×因數=積
積÷一個因數=另一個因數

9、 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式

1、正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a

2、正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a

3、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab

4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh

5 、三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高

6、平行四邊形
s面積 a底 h高
面積=底×高
s=ah

7、梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2

8、 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9、圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10、圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3

和差問題的公式:
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數

和倍問題:
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)

差倍問題:
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)

植樹問題 :
1、非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 、封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題 :
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題 :
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間

追及問題 :
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間

流水問題 :
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2

濃度問題 :
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題:
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20)(責任編輯VIV)

長度單位換算:
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米

面積單位換算:
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米

體(容)積單位換算:
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升

重量單位換算:
1噸=1000千克
1千克=1000克
1千克=1公斤

人民幣單位換算:
1元=10角
1角=10分
1元=100分

閱讀全文

與六年級復習計算方法相關的資料

熱點內容
原始股退出計算方法 瀏覽:409
水泵間隙的測量方法 瀏覽:520
材料分析方法視頻 瀏覽:332
杜蘭特真正的訓練方法 瀏覽:318
網上買床安裝方法 瀏覽:782
奶奶教裁剪方法簡單好用 瀏覽:449
老人機簡訊中心在哪裡設置方法 瀏覽:855
化肥中氮的含量檢測方法視頻 瀏覽:77
照片如何加水印方法 瀏覽:534
有點打呼嚕有什麼好方法 瀏覽:406
如何賞析詩句方法公式 瀏覽:726
快速融化冰塊的方法 瀏覽:131
手臂痛怎麼治療方法 瀏覽:487
days360函數的使用方法 瀏覽:635
治療濕尤有效方法 瀏覽:913
小米的快捷鍵設置在哪裡設置方法 瀏覽:773
用底線思維方法解決問題 瀏覽:282
檢測方法elisa法 瀏覽:196
遠離口臭的最佳治療方法 瀏覽:688
中葯及其制劑常用的純化方法 瀏覽:153