1. 小學數學解決問題方法大全
小學數學解決問題的 方法 有哪些?解決問題需要注意什麼問題?要抓住什麼要點?下面是我為大家整理的關於小學數學解決問題 方法大全 ,希望對您有所幫助。歡迎大家閱讀參考學習!
1小學數學解決問題方法大全
(1)多讀題,緩慢讀題,讀得順暢、連貫,劃出問題,圈出關鍵詞句。
讀題有利於學生對問題的理解,有助於通過語言描述看到問題解決的契機。對於問題意義表徵受阻的學困生,有必要指導他們從「指讀」(用筆尖指著題目,眼睛看著所指的文字讀)開始,逐步養成邊讀邊思考,反復讀幾遍,直至讀懂的習慣。進一步,還可以指導他們劃出題中已知的數學信息和所求問題,並在句中圈出關鍵詞。
(2)把「大數」化「小」。
例如,一本書共369頁,平均每天看41頁,多少天看完?對有困難的學生,只要將原題改為:一本書24 頁,平均每天看8 頁,多少天看完?他們往往能脫口而出「3天」。再用「小步子」進行追問:用什麼方法算?怎樣列式?為什麼這樣列式?這兩題有什麼相同和不同?從而使學生領悟到,兩題都是求一個數裡面有幾個幾。
(3)聯系生活,想像情境。
讓學生想像自己是問題中的「小明」,進入情境,想像自己拿著20元錢去買票。從而增強學生身臨其境的感受,有助於解決問題。以上三條策略,其實就是過去的讀題、審題策略,現在依然非常實用。
(4)列表、畫圖。
表、圖具有直觀形象的特點,可以幫助學生簡潔、明了、正確地表徵問題,提高解決問題的能力。在用比例知識解決正反比例的問題時,學困生往往不清楚量與量之間的對應關系。可以引導學生列表來幫助理解。
2解決問題方法
(1)培養良好的審題習慣。一要審數和符號,二要審運算順序,明確先算什麼,後算什麼。三要審計算方法的合理、簡便,看能否簡算,然後再動手解題。
(2)養成仔細計算、規范書寫的習慣。按格式書寫,數位對齊,字跡工整、不潦草,保持作業的整齊美觀。
(3)養成估算和驗算的習慣。這是計算正確的保證。驗算是一種能力,也是一種習慣。
(4)強調檢查。計算都要抄題,要求學生凡是抄下來的都校對,做到不錯不漏。
(5)合理使用草稿紙。在打草稿的時候,要從左往右,從上到下,有序的打下去。一張寫完,再翻一張,估計位置不夠不要隨意下筆換一個空間大的地方打草稿。檢查時,也可從草稿入手。
3解決問題方法
1、仔細觀察的習慣。通過課堂上仔細觀察情境圖、操作的過程,發展到留心觀察周圍事物的習慣。
2、敢於提問的習慣。教師要引導學生不恥下問,隨時表揚那些敢於、善於提問題的同學。對於學生的問題,教師要耐心解答。課堂上把提問的權利還給學生。
3、多角度思考的習慣。遇到問題不要局限或拘泥於一個角度思考問題,而是從多個角度去探討問題的答案,鼓勵學生的 創新思維 、求異思維。
4、善於聯想、猜想和假設的習慣。遇到問題,無從下手時,可以大膽去猜想、假設答案,然後再往前推理。尤其是在做那些難度較大的思考題時,可用這種方法。
如果學生養成了這幾種好的習慣,學生的思維靈活度便會大大提高,理解能力也會跟著上升。
4解決問題方法
(1)合理強化。
在學困生不合理的知識結構問題解決之後,應進行相應的練習。實施練習的首要原則是增強針對性,做到缺什麼補什麼,什麼弱強化什麼;同時,注意及時強化與把握好強化的頻率。
及時強化是根據遺忘曲線先快後慢的規律,使學生新獲得的知識點和知識結構當堂鞏固;強化的頻率是指根據掌握、回生的實際情況,縮短或延長強化的周期,以促進問題解決方法的內化。
(2)分解強化。
為了讓學困生形成比較穩定、清晰的思路,我們通常採用「分解強化」策略實施訓練,即將問題分解為若干個「小步子」,為思維的清晰化提供一個支架,再逐漸將支架拆除。
(3)順向加工策略。
順向加工策略,是指不考慮一道題的特殊問題,而是整體考慮該類問題所含變數能組成多少種問題情境,予以全面呈現,一一練習,以此幫助學生有效地形成解決該類型問題的知識系統。
(4)在輔導學困生時,要注意強調第四個步驟。例如,一個圓錐形的模具,底面半徑是75px,高是100px。它的體積是多少?學困生往往能選擇公式V = 13Sh ,但是算式卻列成1/3×3×4。原來,他們直覺地認為是三個數相乘,卻忽略了公式的實際意義。因此,強調所需條件,提醒關注已知數據常常是必要的。
相關 文章 :
1. 小學數學解決問題策略
2. 小學數學教學方法有哪些問題
3. 小學數學的19種學習方法
4. 小學數學應用題解題方法
5. 小學數學學好的方法和技巧
2. 初中的數學公式(解決問題的策略)
中學數學常用的解題方法
數學的解題方法是隨著對數學對象的研究的深入而發展起來的。教師鑽研習題、精通解題方法,可以促進教師進一步熟練地掌握中學數學教材,練好解題的基本功,提高解題技巧,積累教學資料,提高業務水平和教學能力。
下面介紹的解題方法,都是初中數學中最常用的,有些方法也是中學教學大綱要求掌握的。
1、配方法
所謂配方,就是把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
10.客觀性題的解題方法
選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標准化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷准確迅速,有利於考查學生的分析判斷能力和計算能力等優點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發,運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。
(5)圖解法:藉助於符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,稱為分析法。
3. 數學解決問題的方法
數學解決問題的方式主要是應用各種知識,讓這些知識彼此之間配合起來,並且,配合的項目之間的聯系有「單位1」,「常數」和「模式」,你也可以換用其他名字來表示這三項。也就是說,解決應用問題主要是把多種「有機聯系」的方法結合起來。
4. 小學數學解決問題的四個步驟
解決問題三步驟的實施
(一)閱讀與理解
1.找信息
找信息是解決問題的第一步。在低年級多是以圖畫、表格、對話等方式呈現問題。隨著年級升高,逐漸增加純文字問題的量。在實際教學中,對於中低年級而言,最有效的途徑是知道學生學會看圖,從圖中收集必要的信息。教師要注意三種情況,一是題中的信息比較分散,應指導學生多次看圖,將能知道的信息盡量找到;二是題中信息比較隱蔽時,容易忽略,這是要引導學生仔細看圖,三是信息的數量較多,要引導學生根據問題收集有關信息。
2.提問題
提出問題比解決問題更重要。只有認識到信息之間的聯系,才能提出一個合理的數學問題。教師有意識給學生提供機會,為學生營造大膽提出問題的氣氛 ,引導學生學會提出問題,鼓勵學生提出問題。
3.示意圖
示意圖讓文字有了圖形的輔助,有助於體現教師教學的直觀性,同時能夠幫助學生更好地理解和接受所學的知識。指導學生示意圖,能從根本上培養和增強學生解題能力和自主學習的能力。授人以魚不如授人以漁,學會解題方法才能從根本上學會如何做題,學會畫示意圖才能使學生在今後的學習中,能進行自主學習探究,找出解決問題的方法。
(二)分析與解答
1.數量關系
心理學先入為主原則,第一次學習建立起來的「模型」表象,不僅會給學生留下深刻的印象,而且還具有導向作用。在一至四年級的除法「應用題」中,都是被除數大於除數,加之教材編排題型過於單一,缺少對比呈現。如果老師教學時缺少分析「數量關系」,或者有些老師為了追求成績,直接告訴學生:「記住你就用大數除以小數!」以至於到了五年級形成習慣。所以,「應用題」教學一定要加強「數量關系」的分析。
數量關系就是學生在運用運算意義和基本數量關系解決生產、生活中實際問題的基礎上,對周圍生活中的一些數量關系積累了一些感性的認識,教師可以適當地引導他們再抽象概括一些具體的數量關系式,大家習慣上稱這種數量關系為「常見的數量關系」。例如:單價與數量、總價之間的關系,工作效率與工作時間、工作總量之間的關系,速度與時間、路程的關系,等等。
2.列式計算
列式計算是解決問題最重要的步驟,找信息,提問題,以及畫示意圖都是為了列出式子,算出答案。下了如此多的功夫就為了這一步驟,所以要求學生細心謹慎,不要看錯數據。記錯數。
3.回顧與反思
回顧和反思學習過程,總結學習方法,積累教學活動經驗,感悟數學思想方法。在回顧中感受成功,增強學習自信心,養成反思習慣。在教學中,我們要重視回顧和反思。其實回顧與反思屬於檢查。檢查在列式中有沒有寫錯加減乘除,檢查式子中有沒有看錯數據,寫錯數據,檢查有沒有計算錯誤,比如低年級的滿十就進一,不夠減就退一,乘法口訣有沒有出錯,高年級的小數點有沒有點錯,或者分數的約分是否約完整等等。
總的來說,正因為小學數學解決問題的教學是《新課程標准》中規定的課程目標之一,在小學數學中佔有非常重要的地位,是教學中的最難點之一。所以就解決問題中的閱讀與理解、分析與解答和回顧與反思進行淺談,希望對小學數學解決問題的解決方法起到作用。
5. 關於小學數學應用題全部的計算公式 及方法
首先是一些面積的基本計算公式,如:圓的計算公式(面積、周長)長方形的計算公式(面積、周長)正方形、長方體、正方體、圓柱體等其他圖形的計算公式。
其次,就是列方程,每次遇到不會的應用題都推薦用方程的形式來解決,這是最為簡單的回答方法。其中,列方程的方法也分為好幾種:1、順著題目的意思走
2、根據題目的意思來列出等量關系(建議設單倍數為X,比較方便)
3、根據圖形的計算公式來列方程
4、在一句話中,把「比」字看作一個「=」,把「是」字也看作一個「=」。
5、(關於行程問題中的相遇問題)總量=慢者先行路程+快者路程+慢者路程
6、(關於工作問題)工作效率*工作時間=工作總量
7、(關於行程問題中的相遇問題)一半路程=另一半路程
8、尋找一個不變數:總量=總量
9、(關於變化問題)三步曲:1、看始時兩個物體的量
2、變化的過程
3、結果
接下來,就是一些簡單的分數應用題了,建議牢記分數的四則運算,和結尾能化簡就化簡的原則,下面是一些簡短的例子,便於理解:
加法:2/3+6/3
=6/9+6/3
=6/12
=1/2
減法:6/6-6/3
=6/(6-3)
=6/3
=2/1
乘法:6/5*6/6
=6*6/6*5
=36/30
=6/5
除法:(等於乘另一個數的倒數)6/6/5/6
=6*6/6*5
=36/30
=6/5
幫我加點¥吧,這年頭出來混不容易呀!囧囧囧謝謝!!
6. 數學計算問題如何解決 關於計算方法 計算技巧 快速計算 以及無法快速計算的情況下需要怎樣做
嗯....不知道你多大啊...那我大概說說
計算方法有很多:完全平方法、平方差、十字相乘法、裂項法等
技巧嘛,就是多做題,提高做題速度,練到一眼就知道用什麼方法做,且做的快、准
無法快速計算的,初中可以用計算器,高中的話,實在不知道怎麼做時,就一步一步來。一般可以選擇加上一個數,配成完全平方後,再減去那個數。在這里就不一一列舉了
碼字真心很辛苦,求多點分哈~
7. 數學解決問題的方法
1、公式法:將公式直接運用到問題中,常用在代數問題中解決該類問題;
2、逆推倒想法:由問題的結論推理到問題中的條件,常用在幾何問題中。解決該類問題必須掌握好幾何中的定義、公理、定理和推論等;
3、數形結合法:將問題轉化成圖形進行解決,常用在代數中的應用題中。
總的來說,解決數學問題的方法有兩種:綜合法和分析法。
8. 數學解決問題的方法
總的來說,解決數學問題的方法有兩種:綜合法和分析法。綜合法就是利用已有的條件和結論一步一步的推導出想要的結論,是一種直接解決問題的方法;分析法就是由要得到的結論倒推出必須的條件,然後再將推出的條件作為結論,繼續倒推必要的條件……如此循環,直到最後推出所要的條件是已知的為止,此時問題已基本上解決了,只需按原路回推即可解決問題,這是一種間接解決問題的方法,但卻行之有效。而實際應用中,往往兩者結合使用。其他的那些解題方法,像轉化、假設、替換、倒推等都只是這兩種方法的細化而已。
9. 小學數學計算方法解決實際問題四個步驟
1、讀題並找出已知條件和所求問題。
2、分析數量之間的關系,確定先算什麼,再算什麼。。。最後算什麼。
3、列式計算。
4、檢驗作答。