A. 學好有限元需要哪些數學基礎
高等數學(數學分析)、線性代數(高等代數)偏微分方程、常微分方程、泛函分析、復變函數等。
在數學中,有限元法(FEM,Finite Element Method)是一種為求解偏微分方程邊值問題近似解的數值技術。求解時對整個問題區域進行分解,每個子區域都成為簡單的部分,這種簡單部分就稱作有限元。它通過變分方法,使得誤差函數達到最小值並產生穩定解。類比於連接多段微小直線逼近圓的思想,有限元法包含了一切可能的方法,這些方法將許多被稱為有限元的小區域上的簡單方程聯系起來,並用其去估計更大區域上的復雜方程。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然後推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。這個解不是准確解,而是近似解,因為實際問題被較簡單的問題所代替。由於大多數實際問題難以得到准確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。
B. 什麼是有限元法和有限差分法
有限元法(finite element method)是一種高效能、常用的數值計算方法。科學計算領域,常常需要求解各類微分方程,而許多微分方程的解析解一般很難得到,使用有限元法將微分方程離散化後,可以編製程序,使用計算機輔助求解。
有限差分方法(finite difference method)一種求偏微分(或常微分)方程和方程組定解問題的數值解的方法,簡稱差分方法。
(2)有限元數值計算方法擴展閱讀:
有限差分法(FDM)的起源,討論其在靜電場求解中的應用。以鋁電解槽物理模型為例,採用FDM對其場域進行離散,使用MATLAB和C求解了各節點的電位。由此,繪制了整個場域的等位線和電場強度矢量分布。同時,討論了加速收斂因子對超鬆弛迭代演算法迭代速度的影響,以及具有正弦邊界條件下的電場分布。
有限差分方法(FDM)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。
該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。
該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。
C. 什麼是有限元法
有限元法(finite element method)是一種高效能、常用的數值計算方法。科學計算領域,常常需要求解各類微分方程,而許多微分方程的解析解一般很難得到,使用有限元法將微分方程離散化後,可以編製程序,使用計算機輔助求解。有限元法在早期是以變分原理為基礎發展起來的,所以它廣泛地應用於以拉普拉斯方程和泊松方程所描述的各類物理場中(這類場與泛函的極值問題有著緊密的聯系)。自從1969年以來,某些學者在流體力學中應用加權余數法中的迦遼金法(Galerkin)或最小二乘法等同樣獲得了有限元方程,因而有限元法可應用於以任何微分方程所描述的各類物理場中,而不再要求這類物理場和泛函的極值問題有所聯系。基本思想:由解給定的泊松方程化為求解泛函的極值問題。
D. 有限積分法和有限差分法
1.1 概念
有限差分方法(FDM)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。
1.2 差分格式
(1)從格式的精度來劃分,有一階格式、二階格式和高階格式。
(2)從差分的空間形式來考慮,可分為中心格式和逆風格式。
(3)考慮時間因子的影響,差分格式還可以分為顯格式、隱格式、顯隱交替格式等。
目前常見的差分格式,主要是上述幾種形式的組合,不同的組合構成不同的差分格式。差分方法主要適用於有結構網格,網格的步長一般根據實際地形的情況和柯朗穩定條件來決定。
1.3 構造差分的方法
構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有三種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。
2. FEM
2.1 概述
有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式,藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數形式,便構成不同的有限元方法。
2.2 原理
有限元方法最早應用於結構力學,後來隨著計算機的發展慢慢用於流體力學、土力學的數值模擬。在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元上的近似解構成。在河道數值模擬中,常見的有限元計算方法是由變分法和加權餘量法發展而來的里茲法和伽遼金法、最小二乘法等。
根據所採用的權函數和插值函數的不同,有限元方法也分為多種計算格式。
(1)從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法;
(2)從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格;
(3)從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。
不同的組合同樣構成不同的有限元計算格式。
對於權函數,伽遼金(Galerkin)法是將權函數取為逼近函數中的基函數;最小二乘法是令權函數等於餘量本身,而內積的極小值則為對代求系數的平方誤差最小;在配置法中,先在計算域內選取N個配置點。令近似解在選定的N個配置點上嚴格滿足微分方程,即在配置點上令方程餘量為0。插值函數一般由不同次冪的多項式組成,但也有採用三角函數或指數函數組成的乘積表示,但最常用的多項式插值函數。
有限元插值函數分為兩大類,一類只要求插值多項式本身在插值點取已知值,稱為拉格朗日(Lagrange)多項式插值;另一種不僅要求插值多項式本身,還要求它的導數值在插值點取已知值,稱為哈密特(Hermite)多項式插值。單元坐標有笛卡爾直角坐標系和無因次自然坐標,有對稱和不對稱等。常採用的無因次坐標是一種局部坐標系,它的定義取決於單元的幾何形狀,一維看作長度比,二維看作面積比,三維看作體積比。在二維有限元中,三角形單元應用的最早,近來四邊形等參元的應用也越來越廣。對於二維三角形和四邊形電源單元,常採用的插值函數為有Lagrange插值直角坐標系中的線性插值函數及二階或更高階插值函數、面積坐標系中的線性插值函數、二階或更高階插值函數等。
2.3 基本原理與解題步驟
對於有限元方法,其基本思路和解題步驟可歸納為:
(1)建立積分方程,根據變分原理或方程餘量與權函數正交化原理,建立與微分方程初邊值問題等價的積分表達式,這是有限元法的出發點。
(2)區域單元剖分,根據求解區域的形狀及實際問題的物理特點,將區域剖分為若干相互連接、不重疊的單元。區域單元劃分是採用有限元方法的前期准備工作,這部分工作量比較大,除了給計算單元和節點進行編號和確定相互之間的關系之外,還要表示節點的位置坐標,同時還需要列出自然邊界和本質邊界的節點序號和相應的邊界值。
(3)確定單元基函數,根據單元中節點數目及對近似解精度的要求,選擇滿足一定插值條件的插值函數作為單元基函數。有限元方法中的基函數是在單元中選取的,由於各單元具有規則的幾何形狀,在選取基函數時可遵循一定的法則。
(4)單元分析:將各個單元中的求解函數用單元基函數的線性組合表達式進行逼近;再將近似函數代入積分方程,並對單元區域進行積分,可獲得含有待定系數(即單元中各節點的參數值)的代數方程組,稱為單元有限元方程。
(5)總體合成:在得出單元有限元方程之後,將區域中所有單元有限元方程按一定法則進行累加,形成總體有限元方程。
(6)邊界條件的處理:一般邊界條件有三種形式,分為本質邊界條件(狄里克雷邊界條件)、自然邊界條件(黎曼邊界條件)、混合邊界條件(柯西邊界條件)。對於自然邊界條件,一般在積分表達式中可自動得到滿足。對於本質邊界條件和混合邊界條件,需按一定法則對總體有限元方程進行修正滿足。
(7)解有限元方程:根據邊界條件修正的總體有限元方程組,是含所有待定未知量的封閉方程組,採用適當的數值計算方法求解,可求得各節點的函數值。
3. 有限體積法
有限體積法(FiniteVolumeMethod)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。其中的未知數是網格點上的因變數的數值。為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面。從積分區域的選取方法看來,有限體積法屬於加權剩餘法中的子區域法;從未知解的近似方法看來,有限體積法屬於採用局部近似的離散方法。簡言之,子區域法屬於有限體積發的基本方法。有限體積法的基本思路易於理解,並能得出直接的物理解釋。離散方程的物理意義,就是因變數在有限大小的控制體積中的守恆原理,如同微分方程表示因變數在無限小的控制體積中的守恆原理一樣。限體積法得出的離散方程,要求因變數的積分守恆對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恆;而有限體積法即使在粗網格情況下,也顯示出准確的積分守恆。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。有限單元法必須假定值在網格點之間的變化規律(既插值函數),並將其作為近似解。有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似。在有限體積法中,插值函數只用於計算控制體積的積分,得出離散方程之後,便可忘掉插值函數;如果需要的話,可以對微分方程中不同的項採取不同的插值函數。
4. 比較分析
有限差分法(FDM):直觀,理論成熟,精度可眩但是不規則區域處理繁瑣,雖然網格生成可以使FDM應用於不規則區域,但是對區域的連續性等要求較嚴。使用FDM的好處在於易於編程,易於並行。
有限元方法(FEM):適合處理復雜區域,精度可眩缺憾在於內存和計算量巨大。並行不如FDM和FVM直觀。不過FEM的並行是當前和將來應用的一個不錯的方向。
有限容積法:適於流體計算,可以應用於不規則網格,適於並行。但是精度基本上只能是二階了。FVM的優勢正逐漸顯現出來,FVM在應力應變,高頻電磁場方面的特殊的優點正在被人重視。
比較一下:
有限容積法和有限差分法:一個區別就是有限容積法的截差是不定的(跟取的相鄰點有關,積分方法離散方程),而有限差分就可以直接知道截差(微分方法離散方程)。有限容積法和有限差分法最本質的區別是,前者是根據積分方程推導出來的(即對每個控制體積分),後者直接根據微分方程推導出來,所以前者的精度不但取決於積分時的精度,還取決與對導數處理的精度,一般有限容積法總體的精度為二階,因為積分的精度限制,當然有限容積法對於守恆型方程導出的離散方程可以保持守恆型;而後者直接由微分方程導出,不涉及積分過程,各種導數的微分藉助Taylor展開,直接寫出離散方程,當然不一定有守恆性,精度也和有限容積法不一樣,一般有限差分法可以使精度更高一些。
當然二者有聯系,有時導出的形式一樣,但是概念上是不一樣的。
至於有限容積法和有限元相比,有限元在復雜區域的適應性對有限容積是毫無優勢可言的,至於有限容積的守恆性,物理概念明顯的這些特點,有限元是沒有的。目前有限容積在精度方面與有限元法有些差距。
有限元方法比有限差分優越的方面主要在能適應不規則區域,但是這只是指的是傳統意義上的有限差分,現在發展的一些有限差分已經能適應不規則區域。對於橢圓型方程,如果區域規則,傳統有限差分和有限元都能解,在求解效率,這里主要指編程負責度和收斂快慢、內存需要,肯定有限差分有優勢。
E. 有限元法的介紹
有限元法(finite element method)是一種高效能、常用的數值計算方法。科學計算領域,常常需要求解各類微分方程,而許多微分方程的解析解一般很難得到,使用有限元法將微分方程離散化後,可以編製程序,使用計算機輔助求解。有限元法在早期是以變分原理為基礎發展起來的,所以它廣泛地應用於以拉普拉斯方程和泊松方程所描述的各類物理場中(這類場與泛函的極值問題有著緊密的聯系)。自從1969年以來,某些學者在流體力學中應用加權余數法中的迦遼金法(Galerkin)或最小二乘法等同樣獲得了有限元方程,因而有限元法可應用於以任何微分方程所描述的各類物理場中,而不再要求這類物理場和泛函的極值問題有所聯系。基本思想:由解給定的泊松方程化為求解泛函的極值問題。
F. 數值計算方法、有限元法、無網格法的關系
有限元邊界元之類的演算法都是用來解帶有邊界條件的偏微分方程, 數值計算教材一般不會介紹這類特殊問題的演算法, 一般只介紹最基本常見的演算法
有限元是有網格的演算法, 跟無網格的演算法明顯是不同的, 所謂「交叉」,既然是解同類的問題, 有交叉也有各自特點這是正常的
G. 有限元基於什麼理論
有限元方法是求解數學物理問題的一種數值計算方法,起源於固體力學,然後迅速擴展到流體力學、傳熱學、電磁學等其他物理領域。
有限元分析是利用數學近似的方法對真實物理系統(幾何和載荷工況)進行模擬。利用簡單而又相互作用的元素,即單元,用有限數量的未知量去逼近無限未知量的真實系統。
有限元模型 是真實系統理想化的數學抽象。
H. 有限元法和數值分析法有什麼區別
有限元法是數值分析法中的一種,是一套求微分方程的系統化數值計算方法,是解決力學問題比較有效的數值計算方法,是將數值計算轉換為矩陣計算,有利於計算機運算。數值分析法就是構造一個比較簡單的函數關系,來求解方程的近似值。
I. 誰能解釋下什麼是有限元。
有限元
有限元法(FEA,Finite Element Analysis)的基本概念是用較簡單的問題代替復雜問題後再求解。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然後推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。這個解不是准確解,而是近似解,因為實際問題被較簡單的問題所代替。由於大多數實際問題難以得到准確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。
英文:Finite Element 有限單元法是隨著電子計算機的發展而迅速發展起來的一種現代計算方法。它是50年代首先在連續體力學領域--飛機結構靜、動態特性分析中應用的一種有效的數值分析方法,隨後很快廣泛的應用於求解熱傳導、電磁場、流體力學等連續性問題。 有限元法分析計算的思路和做法可歸納如下:
編輯本段1) 物體離散化
將某個工程結構離散為由各種單元組成的計算模型,這一步稱作單元剖分。離散後單元與單元之間利用單元的節點相互連接起來;單元節點的設置、性質、數目等應視問題的性質,描述變形形態的需要和計算進度而定(一般情況單元劃分越細則描述變形情況越精確,即越接近實際變形,但計算量越大)。所以有限元中分析的結構已不是原有的物體或結構物,而是同新材料的由眾多單元以一定方式連接成的離散物體。這樣,用有限元分析計算所獲得的結果只是近似的。如果劃分單元數目非常多而又合理,則所獲得的結果就與實際情況相符合。
編輯本段2) 單元特性分析
A、 選擇位移模式 在有限單元法中,選擇節點位移作為基本未知量時稱為位移法;選擇節點力作為基本未知量時稱為力法;取一部分節點力和一部分節點位移作為基本未知量時稱為混合法。位移法易於實現計算自動化,所以,在有限單元法中位移法應用范圍最廣。 當採用位移法時,物體或結構物離散化之後,就可把單元總的一些物理量如位移,應變和應力等由節點位移來表示。這時可以對單元中位移的分布採用一些能逼近原函數的近似函數予以描述。通常,有限元法我們就將位移表示為坐標變數的簡單函數。這種函數稱為位移模式或位移函數。 B、 分析單元的力學性質 根據單元的材料性質、形狀、尺寸、節點數目、位置及其含義等,找出單元節點力和節點位移的關系式,這是單元分析中的關鍵一步。此時需要應用彈性力學中的幾何方程和物理方程來建立力和位移的方程式,從而導出單元剛度矩陣,這是有限元法的基本步驟之一。 C、 計算等效節點力 物體離散化後,假定力是通過節點從一個單元傳遞到另一個單元。但是,對於實際的連續體,力是從單元的公共邊傳遞到另一個單元中去的。因而,這種作用在單元邊界上的表面力、體積力和集中力都需要等效的移到節點上去,也就是用等效的節點力來代替所有作用在單元上的力。
編輯本段3) 單元組集
利用結構力的平衡條件和邊界條件把各個單元按原來的結構重新連接起來,形成整體的有限元方程 (1-1) 式中,K是整體結構的剛度矩陣;q是節點位移列陣;f是載荷列陣。
編輯本段4) 求解未知節點位移
解有限元方程式(1-1)得出位移。這里,可以根據方程組的具體特點來選擇合適的計算方法。 通過上述分析,可以看出,有限單元法的基本思想是"一分一合",分是為了就進行單元分析,合則為了對整體結構進行綜合分析。 有限元的發展概況 1943年 courant在論文中取定義在三角形域上分片連續函數,利用最小勢能原理研究St.Venant的扭轉問題。 1960年 clough的平面彈性論文中用「有限元法」這個名稱。 1965年 馮康發表了論文「基於變分原理的差分格式」,這篇論文是國際學術界承認我國獨立發展有限元方法的主要依據。 1970年 隨著計算機和軟體的發展,有限元發展起來。 涉及的內容:有限元所依據的理論,單元的劃分原則,形狀函數的選取及協調性。 有限元法涉及:數值計算方法及其誤差、收斂性和穩定性。 應用范圍:固體力學、流體力學、熱傳導、電磁學、聲學、生物力學 求解的情況:桿、梁、板、殼、塊體等各類單元構成的彈性(線性和非線性)、彈塑性或塑性問題(包括靜力和動力問題)。能求解各類場分布問題(流體場、溫度場、電磁場等的穩態和瞬態問題),水流管路、電路、潤滑、雜訊以及固體、流體、溫度相互作用的問題。
編輯本段5)有限元的未來是多物理場耦合
5)有限元的未來是多物理場耦合 隨著計算機技術的迅速發展,在工程領域中,有限元分析(FEA)越來越多地用於模擬模擬,來求解真實的工程問題。這些年來,越來越多的工程師、應用數學家和物理學家已經證明這種採用求解偏微分方程(PDE)的方法可以求解許多物理現象,這些偏微分方程可以用來描述流動、電磁場以及結構力學等等。有限元方法用來將這些眾所周知的數學方程轉化為近似的數字式圖象。 早期的有限元主要關注於某個專業領域,比如應力或疲勞,但是,一般來說,物理現象都不是單獨存在的。例如,只要運動就會產生熱,而熱反過來又影響一些材料屬性,如電導率、化學反應速率、流體的粘性等等。這種物理系統的耦合就是我們所說的多物理場,分析起來比我們單獨去分析一個物理場要復雜得多。很明顯,我們現在需要一個多物理場分析工具。 在上個世紀90年代以前,由於計算機資源的缺乏,多物理場模擬僅僅停留在理論階段,有限元建模也局限於對單個物理場的模擬,最常見的也就是對力學、傳熱、流體以及電磁場的模擬。看起來有限元模擬的命運好像也就是對單個物理場的模擬。 現在這種情況已經開始改變。經過數十年的努力,計算科學的發展為我們提供了更靈巧簡潔而又快速的演算法,更強勁的硬體配置,使得對多物理場的有限元模擬成為可能。新興的有限元方法為多物理場分析提供了一個新的機遇,滿足了工程師對真實物理系統的求解需要。有限元的未來在於多物理場求解。 千言萬語道不盡,下面只能通過幾個例子來展示多物理場的有限元分析在未來的一些潛在應用。 壓電擴音器(Piezoacoustic transcer)可以將電流轉換為聲學壓力場,或者反過來,將聲場轉換為電流場。這種裝置一般用在空氣或者液體中的聲源裝置上,比如相控陣麥克風,超聲生物成像儀,聲納感測器,聲學生物治療儀等,也可用在一些機械裝置比如噴墨機和壓電馬達等。 壓電擴音器涉及到三個不同的物理場:結構場,電場以及流體中的聲場。只有具有多物理場分析能力的軟體才能求解這個模型。 壓電材料選用PZT5-H晶體,這種材料在壓電感測器中用得比較廣泛。在空氣和晶體的交界面處,將聲場邊界條件設置為壓力等於結構場的法向加速度,這樣可以將壓力傳到空氣中去。另外,晶體域中又會因為空氣壓力對其的影響而產生變形。模擬研究了在施加一個幅值200V,震盪頻率為300 KHz的電流後,晶體產生的聲波傳播。這個模型的描述及其完美的結果表明在任何復雜的模型下,我們都可以用一系列的數學模型進行表達,進而求解。 多物理場建模的另外一個優勢就是在學校里,學生們直觀地獲取了以前無法見到的一些現象,而簡單易懂的表達方式也獲得了學生們的好感。這只是Krishan Kumar Bhatia博士在紐約Glassboro的Rowan 大學給高年級的畢業生講授傳熱方程課程時介紹建模及分析工具所感受到的,他的學生的課題是如何冷卻一個摩托車的發動機箱。Bhatia博士教他們如何利用「設計-製造-檢測」的理念來判斷問題、找出問題、解決問題。如果沒有計算機模擬的應用,這種方法在課堂上推廣是不可想像的,因為所需費用實在是太大了。 COMSOL Multiphysics擁有優秀的用戶界面,可以使學生方便地設置傳熱問題,並很快得到所需要的結果。「我的目標是使每個學生都能了解偏微分方程,當下次再遇到這樣的問題時,他們不會再擔心,」 Bhatia博士說,「這不需要了解太多的分析工具,總的來說,學生都反映『這個建模工具太棒了』」。 很多優秀的高科技工程公司已經看到多物理場建模可以幫助他們保持競爭力。多物理場建模工具可以讓工程師進行更多的虛擬分析而不是每次都需要進行實物測試。這樣,他們就可以快速而經濟地優化產品。在印度尼西亞的Medrad Innovations Group中,由John Kalafut博士帶領著一個研究小組,採用多物理場分析工具來研究細長的注射器中血細胞的注射過程,這是一種非牛頓流體,而且具有很高的剪切速率。 通過這項研究,Medrad的工程師製造了一個新穎的裝置稱為先鋒型血管造影導管(Vanguard Dx Angiographic Catheter)。同採用尖噴嘴的傳統導管相比,採用擴散型噴嘴的新導管使得造影劑分布得更加均勻。造影劑就是在進行X光拍照時,將病變的器官顯示得更加清楚的特殊材料。 另外一個問題就是傳統導管在使用過程中可能會使得造影劑產生很大的速度,進而可能會損傷血管。先鋒型血管造影導管降低了造影劑對血管產生的沖擊力,將血管損傷的可能性降至最低。 關鍵的問題就是如何去設計導管的噴嘴形狀,使其既能優化流體速度又能減少結構變形。Kalafut的研究小組利用多物理場建模方法將層流產生的力耦合到應力應變分 析中去,進而對各種不同噴嘴的形狀、布局進行流固耦合分析。「我們的一個實習生針對不同的流體區域建立不同的噴嘴布局,並進行了分析,」 Kalafut博士說,「我們利用這些分析結果來評估這些新想法的可行性,進而降低實體模型製造次數」。 摩擦攪拌焊接(FSW),自從1991年被申請專利以來,已經廣泛應用於鋁合金的焊接。航空工業最先開始採用這些技術,現在正在研究如何利用它來降低製造成本。在摩擦攪拌焊接的過程中,一個圓柱狀具有軸肩和攪拌頭的刀具旋轉插入兩片金屬的連接處。旋轉的軸肩和攪拌頭用來生熱,但是這個熱還不足以融化金屬。反之,軟化呈塑性的金屬會形成一道堅實的屏障,會阻止氧氣氧化金屬和氣泡的形成。粉碎,攪拌和擠壓的動作可以使焊縫處的結構比原先的金屬結構還要好,強度甚至可以到原來的兩倍。這種焊接裝置甚至可以用於不同類型的鋁合金焊接。 空中客車(AirBus)資助了很多關於摩擦攪拌焊接的研究。在製造商大規模投資和重組生產線之前,Cranfield大學的Paul Colegrove博士利用多物理場分析工具幫助他們理解了加工過程。 第一個研究成果是一個摩擦攪拌焊接的數學模型,這讓空客的工程師「透視」到焊縫中來檢查溫度分布和微結構的變化。Colegrove博士和他的研究小組還編寫了一個帶有圖形界面的模擬工具,這樣空客的工程師可以直接提取材料的熱力屬性以及焊縫極限強度。 在這個摩擦攪拌焊接的模擬過程中,將三維的傳熱分析和二維軸對稱的渦流模擬耦合起來。傳熱分析計算在刀具表面施加熱流密度後,結構的熱分布。可以提取出刀具的位移,熱邊界條件,以及焊接處材料的熱學屬性。接下來將刀具表面處的三維熱分布映射到二維模型上。耦合起來的模型就可以計算在加工過程中熱和流體之間的相互作用。 將基片的電磁、電阻以及傳熱行為耦合起來需要一個真正的多物理場分析工具。一個典型的應用是在半導體的加工和退火的工藝中,有一種利用感應加熱的熱壁熔爐,它用來讓半導體晶圓生長,這是電子行業中的一項關鍵技術。 例如,金剛砂在2,000°C的高溫環境下可以取代石墨接收器,接收器由功率接近10KW的射頻裝置加熱。在如此高溫下要保持爐內溫度的均勻,爐腔的設計至關重要。經過多物理場分析工具的分析,發現熱量主要是通過輻射的方式進行傳播的。在模型內不僅可以看到晶圓表面溫度的分布,還可以看到熔爐的石英管上的溫度分布。 在電路設計中,影響材料選擇的重要方面是材料的耐久性和使用壽命。電器小型化的趨勢使得可在電路板上安裝的電子元件發展迅猛。眾所周知,安裝在電路板上的電阻以及其他一些元件會產生大量的熱,進而可能使得元件的焊腳處產生裂縫,最後導致整個電路板報廢。 多物理場分析工具可以分析出整個電路板上熱量的轉移,結構的應力變化以及由於溫度的上升導致的變形。這樣做可以用來提升電路板設計的合理性以及材料選擇的合理性。 計算機能力的提升使得有限元分析由單場分析到多場分析變成現實,未來的幾年內,多物理場分析工具將會給學術界和工程界帶來震驚。單調的「設計-校驗」的設計方法將會慢慢被淘汰,虛擬造型技術將讓你的思想走得更遠,通過模擬模擬將會點燃創新的火花。
J. 有限元分析方法是指什麼
有限元分析(FEA,Finite Element Analysis)利用數學近似的方法對真實物理系統(幾何和載荷工況)進行模擬。利用簡單而又相互作用的元素(即單元),就可以用有限數量的未知量去逼近無限未知量的真實系統。
有限元分析是用較簡單的問題代替復雜問題後再求解。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然後推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。
因為實際問題被較簡單的問題所代替,所以這個解不是准確解,而是近似解。由於大多數實際問題難以得到准確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。
(10)有限元數值計算方法擴展閱讀:
有限元方法與其他求解邊值問題近似方法的根本區別在於它的近似性僅限於相對小的子域中。20世紀60年代初首次提出結構力學計算有限元概念的克拉夫(Clough)教授形象地將其描繪為:「有限元法=Rayleigh Ritz法+分片函數」,即有限元法是Rayleigh Ritz法的一種局部化情況。
不同於求解(往往是困難的)滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的復雜邊界條件,這是有限元法優於其他近似方法的原因之一。