A. 整數乘法的計演算法
整數乘法法則:
(1)從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
乘法也可以被視為計算排列在矩形(整數)中的對象或查找其邊長度給定的矩形的區域。 矩形的區域不取決於首先測量哪一側,這說明了交換屬性。 兩種測量的產物是一種新型的測量,例如,將矩形的兩邊的長度相乘給出其面積,這是尺寸分析的主題。
。(n為正整數)
註:零和正整數統稱自然數。
整數也可分為奇數和偶數兩類。
整數中,能夠被2整除的數,叫做偶數。不能被2整除的數則叫做奇數。即當n是整數時,偶數可表示為2n(n為整數);奇數則可表示為2n+1(或2n-1)。
偶數包括正偶數(亦稱雙數)、負偶數和0。所有整數不是奇數,就是偶數。
在十進制里,我們可用看個位數的方式判斷該數是奇數還是偶數:個位為1,3,5,7,9的數為奇數;個位為0,2,4,6,8的數為偶數。
B. 整數乘法的法則
整數乘法法則是整數的運演算法則之一,整數的乘法法則分三種情形表述。兩數相乘,同號得正,異號得負,並把絕對值相乘。整數的乘法法則分三種情形表述:
1.一位數的乘法法則。兩個一位數相乘,可根據乘法定義用加法計算,通常可利用乘法表直接得出任意兩個一位數的積。
2.多位數的乘法法則。依次用乘數的各個數位上的數,分別去乘被乘數的每一數位上的數,然後將乘得的積加起來。
3.對於任意數a,有a×1=a,a×0=0×a=0。
乘法,是指將相同的數加起來的快捷方式。其運算結果稱為積,「x」是乘號。從哲學角度解析,乘法是加法的量變導致的質變結果。整數(包括負數),有理數(分數)和實數的乘法由這個基本定義的系統泛化來定義。兩數相乘,同號得正,異號得負,並把絕對值相乘。
C. 整數乘法的計演算法則是什麼
四則運算\x09 計演算法則
整數加、減\x09把數位對齊,從低位加起.
小數加、減\x09把小數點對齊,再按照整數加、減法的法則進行運算.
分數加、減\x09當分母相同時,把分子直接相加減;分母不同時,要先通分,在相加減.
整數乘法\x09 相同數位對齊,從乘法的末位算起,用乘法的每一位去乘被乘數,得數的末位和
乘數對齊.
整數除法\x09 從被除數的最高位除起,除到被除數的哪一位,商就寫在那一位上面,每次除後余
下的數必須比余數小.
分數乘法\x09 用分子相乘的積做分子,用分母相乘的積做分母.
分數除法\x09 甲數除以乙數(0除外),等於甲數乘乙數的倒數.
小數乘法\x09 小數乘整數,先按整數乘法法則算出積,再看被乘數有幾位小數,就從積的右邊起
數出幾位,點上小數點.
小數除法\x09 除數是整數時,按照整數除法的法則計算,商的小數點要和被除數的小數點對齊;
除數是小數時,先移動除數的小數點,使它變成整數,除數的小數點向右移動幾
位,被除數的小數點也向右移動幾位(數位不夠的用「0」補足)然後按照除數是整數
的小數除法法則進行計算.
D. 整數乘法的方法
整數乘法的計算方法:把兩個因數的末尾對齊,再用第二個因數從個位起依次和第一個因數的每個位相乘;如果第二個因數是兩位數或者是兩位以上的數,個位乘完了再乘十位,然後再乘百位,最後把乘得的積相加就行了,在乘的時候要數位對齊。
E. 整數乘法的計演算法則
整數乘法法則是整數的運演算法則之一,整數的乘法法則分三種情形表述:
1、一位數的乘法法則
兩個一位數相乘,可根據乘法定義用加法計算,通常可利用乘法表直接得出任意兩個一位數的積。
2、多位數的乘法法則
依次用乘數的各個數位上的數,分別去乘被乘數的每一數位上的數,然後將乘得的積加起來。
3、對於任意數a,有
(5)整數乘法計算方法擴展閱讀
一、單項式多項式
單項式與多項式相乘,就是根據分配律,用單項式去乘多項式的每一項,再把所得的積相加。
注意:單項式乘以多項式,結果還是一個多項式,而且項數恰好與相乘以前那個多項式的項數相同。
二、多項式法則
多項式的乘法法則:(a+b)(m+n)=am+an+bm+bn(a、b、m、n都是單項式)
(a+b)²=a²+b²+2ab
(a-b)²=a²+b²-2ab
參考資料:網路——整數乘法法則
F. 整數乘法是怎樣計算的
整數乘法法則:
(1)從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
(2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)
G. 整數乘法法則是什麼
整數乘法法則是整數的運演算法則之一,整數的乘法法則分三種情形表述。兩數相乘,同號得正,異號得負,並把絕對值相乘。
1、一位數的乘法法則。兩個一位數相乘,可根據乘法定義用加法計算,通常可利用乘法表直接得出任意兩個一位數的積。
2、多位數的乘法法則。依次用乘數的各個數位上的數,分別去乘被乘數的每一數位上的數,然後將乘得的積加起來。
3、對於任意數a,有
(7)整數乘法計算方法擴展閱讀
計算方法
使用鉛筆和紙張乘數的常用方法需要一個小數字(通常為0到9的任意兩個數字)的存儲或查詢產品的乘法表,但是一種農民乘法演算法的方法不是。
將數字乘以多於幾位小數位是繁瑣而且容易出錯的。
1、從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;
2、然後把幾次乘得的數加起來;
3、(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0.)
H. 整數乘法的運演算法則
四則運算
計演算法則
整數加、減
把數位對齊,從低位加起。
小數加、減
把小數點對齊,再按照整數加、減法的法則進行運算。
分數加、減
當分母相同時,把分子直接相加減;分母不同時,要先通分,在相加減。
整數乘法
相同數位對齊,從乘法的末位算起,用乘法的每一位去乘被乘數,得數的末位和
乘數對齊。
整數除法
從被除數的最高位除起,除到被除數的哪一位,商就寫在那一位上面,每次除後余
下的數必須比余數小。
分數乘法
用分子相乘的積做分子,用分母相乘的積做分母。
分數除法
甲數除以乙數(0除外),等於甲數乘乙數的倒數。
小數乘法
小數乘整數,先按整數乘法法則算出積,再看被乘數有幾位小數,就從積的右邊起
數出幾位,點上小數點。
小數除法
除數是整數時,按照整數除法的法則計算,商的小數點要和被除數的小數點對齊;
除數是小數時,先移動除數的小數點,使它變成整數,除數的小數點向右移動幾
位,被除數的小數點也向右移動幾位(數位不夠的用「0」補足)然後按照除數是整數
的小數除法法則進行計算。
I. 整數乘法計演算法則是什麼
整數乘法計演算法則:
1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊;
2)然後把幾次乘得的數加起來。
(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0。)