❶ 小學生數學快速計算的幾個方法
1、十幾乘十幾
口訣:十幾+另一數的個位,尾X尾,相加的和加上相乘的積,個位與十位對齊,注意要進位
如:15X16=240
用口訣計算:15+6=21,5X6=30,210+30=240
13X14=182用口訣計算:13+4=17,3X4=12,170+12=182
大家可以試著計算
11X13,12X16,16X17
2、個位與十位互換的兩位數相加
口訣:(個位+十位)X11
如:67+76=143用口訣計算:(6+7)X11=143
93+39=132用口訣計算:(9+3)X11=132
大家可以試著計算
34+43,56+65,78+87
3、個位與十位的兩位數相減
口訣:(被減數十位-被減數個位)X9
如:43-34=9用口訣計算:(4-3)X9=9
95-59=36用口訣計算:(9-5)X9=36
大家可以試著計算76-67,53-35,42-24
一、加法交換律與加法結合律
加法交換律:
兩個數相加,交換加數的位置,它們的和不變。即a+b=b+a
一般地,多個數相加,任意改變相加的次序,其和不變。
a+b+c+d=d+b+a+c
加法結合律:
幾個數相加,先把前兩個數相加,再加上第三個數;或者,先把後兩個數相加,再與第一個數相加,它們的和不變。即:a+b+c=(a+b)+c=a+(b+c),
二、速算與巧算中常用的三大基本思想
1、湊整(目標:整十整百整千...)
2、分拆(分拆後能夠湊成整十整百整千...)
3、組合(合理分組再組合)
三、常見方法
湊整法
兩個數相加,若能恰好湊成整十、整百、整千、整萬…,就把其中的一個數叫做另一個數的"補數",利用"補數"巧算加法,通常稱為"湊整法"
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,
在上面算式中,1叫9的"補數";89叫11的"補數",11也叫89的"補數"。也就是說兩個數互為"補數"。
對於一個較大的數,如何能很快地算出它的"補數"來呢?一般來說,可以這樣"湊"數:從最高位湊起,使各位數字相加得9,到最後個位數字相加得10。
如:87655→12345,46802→53198,87362→12638。
利用"補數"巧算加法,通常稱為"湊整法"。
巧算下面各題:
①36+87+64
②99+136+101
③1361+972+639+28
解:
①式=(36+64)+87=100+87=187
②式=(99+101)+136=200+136=336
③式=(1361+639)+(972+28)=2000+1000=3000
魏德武速算
魏氏速算它可以不藉助任何計算工具在很短時間內就能使學習者,用一種思維,一種方法快速准確地掌握任意數加、減、乘、除的速算方法。從而達到快速提高學習者口算和心算的速算能力。
1、加法速算:計算任意位數的加法速算,方法很簡單學習者只要熟記一種加法速算通用口訣——「本位相加(針對進位數)減加補,前位相加多加一」就可以徹底解決任意位數從高位數到低位數的加法速算方法,比如:
(1),67+48=(6+5)×10+(7-2)=115;
(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。
2、減法速算:計算任意位數的減法速算方法也同樣是用一種減法速算通用口訣——「本位相減(針對借位數)加減補,前位相減多減一」就可以徹底解決任意位數從高位數到低位數的減法速算方法,比如:
(1),67-48=(6-5)×10+(7+2)=19;
(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。
以上內容參考網路-數學速演算法
❸ 數學簡便計算方法技巧四年級簡單易懂
1.提取公因式
這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。
注意相同因數的提取。
例如:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
2.借來借去法
看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。
考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。
例如:
9999+999+99+9
=9999+1+999+1+99+1+9+1-4
3.拆分法
顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。
例如:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
4.加法結合律
注意對加法結合律
(a+b)+c=a+(b+c)
的運用,通過改變加數的位置來獲得更簡便的運算。
例如:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
5.拆分法和乘法分配律結合
這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。
例如:
34×9.9 = 34×(10-0.1)
案例再現:57×101=?
6.利用基準數
在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。
例如:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
7.利用公式法
(1) 加法:
交換律,a+b=b+a
結合律,(a+b)+c=a+(b+c)
(2) 減法運算性質:
a-(b+c)=a-b-c,
a-(b-c)=a-b+c
a-b-c=a-c-b
(a+b)-c=a-c+b=b-c+a
(3):乘法(與加法類似):
交換律,a*b=b*a
結合律,(a*b)*c=a*(b*c)
分配率,(a+b)xc=ac+bc
(a-b)*c=ac-bc
(4) 除法運算性質(與減法類似):
a÷(b*c)=a÷b÷c
a÷(b÷c)=a÷bxc
a÷b÷c=a÷c÷b
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
前邊的運算定律、性質公式很多是由於去掉或加上括弧而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括弧,後面數值的運算符號不變。
8.裂項法
分數裂項是指將分數算式中的項進行拆分,使拆分後的項可前後抵消,這種拆項計算稱為裂項法。
常見的裂項方法是將數字分拆成兩個或多個數字單位的和或差。遇到裂項的計算題時,要仔細的觀察每項的分子和分母,找出每項分子分母之間具有的相同的關系,找出共有部分,裂項的題目無需復雜的計算,一般都是中間部分消去的過程,這樣的話,找到相鄰兩項的相似部分,讓它們消去才是最根本的。
分數裂項的三大關鍵特徵:
(1)分子全部相同,最簡單形式為都是1的,復雜形式可為都是x(x為任意自然數)的,但是只要將x提取出來即可轉化為分子都是1的運算。
(2)分母上均為幾個自然數的乘積形式,並且滿足相鄰2個分母上的因數「首尾相接」
(3)分母上幾個因數間的差是一個定值。
公式:
❹ 小學數學簡便計算公式大全
總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。
①加法
加法交換律:a+b=b+a;
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
②減法
a-b=-(b-a)
a-b-c=a-(b+c)
減法有一個口訣:加括弧,變符號。
③乘法
乘法交換律:a x b=b x a;
乘法結合律:a x b x c=a x (b x c);
乘法分配律:a x (b±c)=a x b±a x c;
小學數學試題中常考的一種題型-計算復雜數式。
經常就會用到乘法分配律,來提取公因數,簡化計算。
【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19
分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。
7.19x1.36+3.13x2.81+1.77x7.19
=7.19x(1.36+1.77)+3.13x2.81
=7.19x3.13+3.13x2.81
=(7.19+2.81)x3.13
=10x3.13
=31.3
④除法
a÷b÷c=a÷(b x c)(b,c不等於0);
a x b÷c=a÷cxb(c不等於0);
以上公式是解四則運算題目的基本關系式。
靈活學習,靈活運用。
它們除了正著用,有時候還得會倒著用。
【例2】計算:47.9x6.6+529x0.34;
分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+52.9x3.4(3.4已經湊出來了)
=47.9x6.6+(47.9+5)x3.4
=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)
=47.9x(6.6+3.4)+17
=496
注意:例2題目中我們將乘法分配律倒著使用。
52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4
除此之外還用到了一個特別的公式。
529x0.34=529÷10x10x0.34
這個公式總結出來,即:
a x b=a÷c x c x b(c不等於0)。
❺ 小學加減法速算方法與技巧
小學數學加法心算技巧
6、比如,個位加十位得數是十位的; 78+87=165;這樣算:7+8=15,再把「15」兩個數字「1」和「5」相加得6,把這個「6」放在「15」的中間,得出「165」; 67+76=143,這樣算:6+7=13,再把「13」兩個數字「1」和「3」相加得4,把這個「4」放在「13」的中間,得出「143」;
❻ 小學四年級數學簡便計算方法技巧
四年級簡便計算例子演示23.17×12+12×46.83
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行
解題過程:
23.17×12+12×46.83
=(23.17+46.83)×12
=70×12
=840
(6)小學生易懂的計算方法擴展閱讀[豎式計算-計算結果]:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:
步驟一:2×70=140
步驟二:1×70=700
根據以上計算結果相加為840
存疑請追問,滿意請採納
❼ 小學數學中的幾種巧算
數學,計算是基礎,也是必備能力。計算能力的提高,計算技巧的掌握,不僅可以提高做題速度,也可以提高做題正確率。
隨著數學競賽的蓬勃發展,數值計算充滿了活力,除了遵循四則混合運算的運算順序外,破局部考慮、立整體分析,巧妙、靈活地運用定律和方法,對處理一些貌似復雜的計算題常常有事半功倍的效果,常見的巧算方法有以下十種。
一、湊整法
運算定律是巧算的支架,是巧算的理論依據,根據式題的特徵,應用定律和性質「湊整」運算數據, 能使計算比較簡便。
1、加法「湊整」。利用加法交換律、結合律「湊整」,例如:
4673+27689+5327+22311
=(4673+5327)+(27689+22311)
= 10000+50000
= 60000
2、減法 「湊整」。 利用減法性質「湊整」, 例如:
50-13-7
= 50-(13+7)
= 30
3、乘法 「湊整」。利用乘法交換律、結合律、分配律「湊整」,例如:
125×4×8×25×78
=(125×8)×(4×25)×78
= 1000×100×78
= 7800000
4、補充數「湊整」。末尾是一個或幾個0的數,運算起來比較簡便。若數末尾不是0,而是98、51等,我們可以用(100-2)、(50+1)等來代替,使運算變得比較簡便、快速。一般地我們把100叫做98的「大約強數」,2叫做98的「補充數」;50叫做51的「大約弱數」,1叫做51的「補充數」。把一個數先寫成它的大約強(弱)數與補充數的差(和),然後再進行運算,例如:
(1)387+99
=387+(100-1)
=387+100-1
=486
(2)1680-89
=1680-(100-11)
=1680-100+11
=1580+11
=1591
(3)69×101
=69×(100+1)
=6900+69
=6969
二、約分法
根據式題結構,採用約分,能使計算比較簡便。例如: