導航:首頁 > 計算方法 > 隨機計算方法

隨機計算方法

發布時間:2022-10-05 06:40:23

1. 電腦隨機數產生的計算具體方法

實現的方法和詳細的操作步驟如下:

1、第一步,為main函數指定一個函數,如下圖所示,然後進入下一步。

2. 如何計算隨機概率

概率論,一個C上下個一個數字的演算法:Cmn=m!/[n!*(m-n)!]
m在下,n在上n!代表n的階乘=1*2*3*……*n。拓展資料:一、概率的嚴格定義:E是隨機試驗,S是它的樣本空間。對於E的每一事件A賦於一個實數,記為P(A),稱為事件A的概率。這里P(·)是一個集合函數,P(·)要滿足下列條件:
(1)非負性:對於每一個事件A,有P(A)≥0;
(2)規范性:對於必然事件S,有P(S)=1;
(3)可列可加性:設A1,A2……是兩兩互不相容的事件,即對於i≠j,Ai∩Aj=φ,(i,j=1,2……),則有P(A1∪A2∪……)=P(A1)+P(A2)+..
二、概率論是研究隨機性或不確定性等現象的數學。更精確地說,概率論是用來模擬實驗在同一環境下會產生不同結果的情況。在自然界和人類社會中,存在大量的隨機現象,而概率是衡量該現象發生的可能性的量度。

3. 隨機數演算法是什麼

在計算機中並沒有一個真正的隨機數發生器,但是可以做到使產生的數字重復率很低,這樣看起來好象是真正的隨機數,實現這一功能的程序叫偽隨機數發生器。有關如何產生隨機數的理論有許多如果要詳細地討論,需要厚厚的一本書的篇幅。不管用什麼方法實現隨機數發生器,都必須給它提供一個名為「種子」的初始值。而且這個值最好是隨機的,或者至少這個值是偽隨機的。「種子」的值通常是用快速計數寄存器或移位寄存器來生成的。下面講一講在C語言里所提供的隨機數發生器的用法。現在的C編譯器都提供了一個基於ANSI標準的偽隨機數發生器函數,用來生成隨機數。它們就是rand()和srand()函數。這二個函數的工作過程如下:」)首先給srand()提供一個種子,它是一個unsignedint類型,其取值范圍從0~65535;2)然後調用rand(),它會根據提供給srand()的種子值返回一個隨機數(在0到32767之間)3)根據需要多次調用rand(),從而不間斷地得到新的隨機數;4)無論什麼時候,都可以給srand()提供一個新的種子,從而進一步「隨機化」rand()的輸出結果。這個過程看起來很簡單,問題是如果你每次調用srand()時都提供相同的種子值,那麼,你將會得到相同的隨機數序列,這時看到的現象是沒有隨機數,而每一次的數都是一樣的了。例如,在以17為種子值調用srand()之後,在首次調用rand()時,得到隨機數94。在第二次和第三次調用rand()時將分別得到26602和30017,這些數看上去是很隨機的(盡管這只是一個很小的數據點集合),但是,在你再次以17為種子值調用srand()後,在對於rand()的前三次調用中,所得的返回值仍然是在對94,26602,30017,並且此後得到的返回值仍然是在對rand()的第一批調用中所得到的其餘的返回值。因此只有再次給srand()提供一個隨機的種子值,才能再次得到一個隨機數。下面的例子用一種簡單而有效的方法來產生一個相當隨機的「種子」值----當天的時間值:g#椋睿悖歟醯洌澹Γ歟簦唬螅簦洌椋錚瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅簦洌歟椋猓瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅螅Γ#矗罰唬簦穡澹螅瑁Γ紓簦弧。#椋睿悖歟醯洌澹Γ歟簦唬螅螅Γ#矗罰唬簦椋恚澹猓瑁Γ紓簦弧。觶錚椋洹。恚幔椋睿ǎ觶錚椋洌。。椋睿簟。椋弧。醯睿螅椋紓睿澹洹。椋睿簟。螅澹澹洌鄭幔歟弧。螅簦潁醯悖簟。簦椋恚澹狻。簦椋恚澹攏醯媯弧。媯簦椋恚澹ǎΓ幔恚穡唬簦椋恚澹攏醯媯弧。螅澹澹洌鄭幔歟劍ǎǎǎǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯簦椋恚澹Γ幔恚穡唬埃疲疲疲疲。ǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯恚椋歟歟椋簦恚蕖。ǎ醯睿螅椋紓睿澹洹。椋睿簦簦椋恚澹攏醯媯恚椋歟歟椋簦恚弧。螅潁幔睿洌ǎǎ醯睿螅椋紓睿澹洹。椋睿簦螅澹澹洌鄭幔歟弧。媯錚潁ǎ椋劍埃唬椋Γ歟簦唬保埃唬椋。穡潁椋睿簦媯ǎΓ瘢醯錚簦唬ィ叮洌Γ#梗玻唬睿Γ瘢醯錚簦籦egjrand());}上面的程序先是調用_ftime()來檢查當前時間yc並把它的值存入結構成員timeBuf.time中wae當前時間的值從1970年1月1日開始以秒計算aeh在調用了_ftime()之後在結構timeBuf的成員millitm中還存入了當前那一秒已經度過的毫秒數,但在DOS中這個數字實際上是以百分之一秒來計算的。然後,把毫秒數和秒數相加,再和毫秒數進行異或運算。當然也可以對這兩個結構成員進行更多的計算,以控制se......餘下全文>>

4. 隨機演算法原理

展開專欄
登錄
企鵝號小編
5.7K 篇文章
關注
詳解各種隨機演算法
2018-02-06閱讀 1.4K0
轉自:JarvisChu

之前將的演算法都是確定的,即對於相同的輸入總對應著相同的輸出。但實際中也常常用到不確定的演算法,比如隨機數生成演算法,演算法的結果是不確定的,我們稱這種演算法為(隨機)概率演算法,分為如下四類:

1、數值概率演算法

用於數值問題的求解,通常是近似解

2、蒙特卡洛演算法Monte Carlo

能得到問題的一個解,但不一定是正確解,正確的概率依賴於演算法運行的時間,演算法所用的時間越多,正確的概率也越高。求問題的准確解;

3、拉斯維加斯演算法 Las Vegas

不斷調用隨機演算法求解,直到求得正確解或調用次數達到某個閾值。所以,如果能得到解,一定是正確解。

4、舍伍德演算法 Sherwood

利用隨機演算法改造已有演算法,使得演算法的性能盡量與輸入數據無關,即平滑演算法的性能。它總能求得問題的一個解,且求得的解總是正確的。

隨機數

概述

計算機產生的隨機數都是偽隨機數,通過線性同餘法得到。

方法:產生隨機序列


d稱為種子;m取值越大越好;m,b互質,常取b為質數;

5. 隨機數的計算公式是什麼

為追求真正的隨機序列,人們曾採用很多種原始的物理方法用於生成一定范圍內滿足精度(位數)的均勻分布序列,其缺點在於:速度慢、效率低、需佔用大量存儲空間且不可重現等。為滿足計算機模擬研究的需求,人們轉而研究用演算法生成模擬各種概率分布的偽隨機序列。偽隨機數是指用數學遞推公式所產生的隨機數。從實用的角度看,獲取這種數的最簡單和最自然的方法是利用計算機語言的函數庫提供的隨機數發生器。典型情況下,它會輸出一個均勻分布在0和1區間內的偽隨機變數的值。其中應用的最為廣泛、研究最徹底的一個演算法即線性同餘法。
線性同餘法LCG(Linear Congruence Generator)
選取足夠大的正整數M和任意自然數n0,a,b,由遞推公式:
ni+1=(af(ni)+b)mod M i=0,1,…,M-1
生成的數值序列稱為是同餘序列。當函數f(n)為線性函數時,即得到線性同餘序列:
ni+1=(a*ni+b)mod M i=0,1,…,M-1
以下是線性同餘法生成偽隨機數的偽代碼:
Random(n,m,seed,a,b)
{
r0 = seed;
for (i = 1;i<=n;i++)
ri = (a*ri-1 + b) mod m
}
其中種子參數seed可以任意選擇,常常將它設為計算機當前的日期或者時間;m是一個較大數,可以把它取為2w,w是計算機的字長;a可以是0.01w和0.99w之間的任何整數。
應用遞推公式產生均勻分布隨機數時,式中參數n0,a,b,M的選取十分重要。
例如,選取M=10,a=b =n0=7,生成的隨機序列為{6,9,0,7,6,9,……},周期為4。
取M=16,a=5,b =3,n0=7,生成的隨機序列為{6,1,8,11,10,5,12,15,14,9,0,3,2,13,4,7,6,1……},周期為16。
取M=8,a=5,b =1,n0=1,生成的隨機序列為{6,7,4,5,2,3,0,1,6,7……},周期為8。

6. 隨機事件的概率怎麼

隨機事件的概率及計算
隨機事件的概率、古典概型、幾何概型及隨機模擬

二. 課標要求:
1、在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別;
2、通過實例,了解兩個互斥事件的概率加法公式;
3、通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。
4、了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義;
5、通過閱讀材料,了解人類認識隨機現象的過程。

三、命題走向
本講內容在高考中所佔比重不大,縱觀近幾年的高考形式對涉及到有關概念的某些計算要求降低,但試題中具有一定的靈活性、機動性。縱觀近幾年的高考對概率要求降低,幾何概型是新加內容,考試涉及的可能性較大。
預測高考:
對概率考查的重點以互斥事件、古典概型、幾何概型的概率事件的計算為主,而以實際應用題出現的形式多以選擇題、填空題為主。

四、教學過程
(一)基本知識要點回顧
1、隨機事件的概念
在一定的條件下所出現的某種結果叫做事件。
(1)隨機事件:在一定條件下可能發生也可能不發生的事件;
(2)必然事件:在一定條件下必然要發生的事件;
(3)不可能事件:在一定條件下不可能發生的事件。
2、隨機事件的概率
事件A的概率:在大量重復進行同一試驗時,事件A發生的頻率

總接近於某個常數,在它附近擺動,這時就把這個常數叫做事件A的概率,記作P(A)。
由定義可知0≤P(A)≤1,顯然必然事件的概率是1,不可能事件的概率是0。
3、事件間的關系
(1)互斥事件:不能同時發生的兩個事件叫做互斥事件;
(2)對立事件:不能同時發生,但必有一個發生的兩個事件叫做互斥事件;
4、事件間的運算
(1)並事件(和事件)
若某事件的發生是事件A或事件B發生,則此事件稱為事件A與事件B的並事件。

註:當A和B互斥時,事件A+B的概率滿足加法公式:
P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+

)=P(A)+P(

)=1。
(2)交事件(積事件)
若某事件的發生是事件A和事件B同時發生,則此事件稱為事件A與事件B的交事件。

閱讀全文

與隨機計算方法相關的資料

熱點內容
中式棉襖製作方法圖片 瀏覽:63
五菱p1171故障碼解決方法 瀏覽:858
男士修護膏使用方法 瀏覽:546
電腦圖標修改方法 瀏覽:607
濕氣怎麼用科學的方法解釋 瀏覽:537
910除以26的簡便計算方法 瀏覽:805
吹東契奇最簡單的方法 瀏覽:704
對腎臟有好處的食用方法 瀏覽:98
電腦四線程內存設置方法 瀏覽:512
數字電路通常用哪三種方法分析 瀏覽:13
實訓課程的教學方法是什麼 瀏覽:525
苯甲醇乙醚鑒別方法 瀏覽:82
蘋果手機微信視頻聲音小解決方法 瀏覽:700
控制箱的連接方法 瀏覽:75
用什麼簡單的方法可以去痘 瀏覽:789
快速去除甲醛的小方法你知道幾個 瀏覽:803
自行車架尺寸測量方法 瀏覽:124
石磨子的製作方法視頻 瀏覽:152
行善修心的正確方法 瀏覽:403
土豆燉雞湯的正確方法和步驟 瀏覽:276