勾股定理計算:直角三角形的兩條直角邊的平方和等於斜邊的平方。a²+b²=c²。
勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。在中國,周朝時期的商高提出了「勾三股四弦五」的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。
(1)長方形勾股定理公式計算方法擴展閱讀:
勾股定理意義
1、勾股定理的證明是論證幾何的發端;
2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;
3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;
4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;
5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用.1971年5月15日,尼加拉瓜發行了一套題為「改變世界面貌的十個數學公式」郵票,這十個數學公式由著名數學家選出的,勾股定理是其中之首。
2. 勾股定理怎麼計算
勾股定理,直角三角形的兩條直角邊的平方和等於斜邊的平方.
A²+B²=C²
C=√(A²+B²)
√(120²+90²)=√22500=√150²=150
例如直角三角形 的三條邊是3(直角邊)、4(直角邊)、5(斜邊)
3²+4²=5²
5=√(3²+4²)=√5²=5
勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。
3. 勾股定理3個公式是什麼
勾股定理計算:直角三角形的兩條直角邊的平方和等於斜邊的平方。a²+b²=c²
勾股定理的三個變形公式是a=k(m²+n²),b=2kmn,c=k(m²+n²)
勾股定理,又稱畢達哥拉斯定理(Pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面幾何中一個基本而重要的定理。
勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。反之,若平面上三角形中兩邊長的平方和等於第三邊邊長的平方,則它是直角三角形(直角所對的邊是第三邊)。
(3)長方形勾股定理公式計算方法擴展閱讀:
勾股定理意義
1、勾股定理的證明是論證幾何的發端;
2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;
3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;
4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;
5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。
1971年5月15日,尼加拉瓜發行了一套題為「改變世界面貌的十個數學公式」郵票,這十個數學公式由著名數學家選出的,勾股定理是其中之首。
4. 勾股定理的公式是什麼 怎麼計算
在任何一個直角三角形中,兩條直角邊的長度的平方和等於斜邊長度的平方,這就叫做勾股定理。即勾的長度的平方加股的長度的平方等於弦的長度的平方。如果用a,b,c分別表示直角三角形的兩條直角邊和斜邊,那麼a²+b²=c²
5. 勾股定理怎麼計算
勾股定理公式是a的平方加上b的平方等於c的平方。如果直角三角形兩直角邊分別為a,b,斜邊為C,那麼公式就是: a^2+b^2=c^2。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。
(5)長方形勾股定理公式計算方法擴展閱讀:
勾股定理簡介:
勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。
勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。
在中國,商朝時期的商高提出了「勾三股四玄五」的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。
網路勾股定理
6. 勾股定理怎麼算。是什麼公式
勾股定理:在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。
(如下圖所示,即a² + b² = c²)
例子:
以上圖的直角三角形為例,a的邊長為3,b的邊長為4,則我們可以利用勾股定理計算出c的邊長。
由勾股定理得,a + b = c → 3 +4 = c
即,9 + 16 = 25 = c²
c =√25 = 5
所以我們可以利用勾股定理計算出c的邊長為5。
勾股定理的逆定理:
勾股定理的逆定理是判斷三角形為鈍角、銳角或直角的一個簡單的方法,其中AB=c為最長邊:
如果a² + b² = c²,則△ABC是直角三角形。
如果a² + b² > c²,則△ABC是銳角三角形(若無先前條件AB=c為最長邊,則該式的成立僅滿足∠C是銳角)。
如果a² + b² < c²,則△ABC是鈍角三角形。
7. 什麼是勾股定理,計算公式是什麼
勾股定理,又稱畢達哥拉斯定理(Pythagoras theorem)、商高定理、新娘座椅定理、百牛定理,是平面幾何中一個基本而重要的定理。
勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。反之,若平面上三角形中兩邊長的平方和等於第三邊邊長的平方,則它是直角三角形(直角所對的邊是第三邊)。
勾股定理計算:直角三角形的兩條直角邊的平方和等於斜邊的平方。a²+b²=c²。
(7)長方形勾股定理公式計算方法擴展閱讀:
勾股定理意義
1、勾股定理的證明是論證幾何的發端;
2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;
3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;
4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;
5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。
1971年5月15日,尼加拉瓜發行了一套題為「改變世界面貌的十個數學公式」郵票,這十個數學公式由著名數學家選出的,勾股定理是其中之首。
8. 勾股定理怎麼算,舉個例題,公式是什麼。
勾股定理,直角三角形的兩條直角邊的平方和等於斜邊的平方。
A²+B²=C²
C=√(A²+B²)
√(120²+90²)=√22500=√150²=150
例如直角三角形 的三條邊是3(直角邊)、4(直角邊)、5(斜邊)
3²+4²=5²
5=√(3²+4²)=√5²=5
(8)長方形勾股定理公式計算方法擴展閱讀:
定理用途
已知直角三角形兩邊求解第三邊,或者已知三角形的三邊長度,證明該三角形為直角三角形或用來證明該三角形內兩邊垂直。利用勾股定理求線段長度這是勾股定理的最基本運用。
1、勾股定理的證明是論證幾何的發端;
2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;
3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;
4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;
5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。
1971年5月15日,尼加拉瓜發行了一套題為「改變世界面貌的十個數學公式」郵票,這十個數學公式由著名數學家選出的,勾股定理是其中之首。
9. 長方形的對角線怎麼算
對角線公式即勾股定理:
對角線等於長的平方加寬的平方之和再開方。
舉例說明:
長為3,寬為4,那麼對角線=3的平方加4的平方之和(即為25) 再開方,最後得到5。
長方形的具有下列性質:
①兩條對角線相等。
②兩條對角線互相平分。
③兩組對邊分別平行。
④兩組對邊分別相等。
⑤四個角都是直角。
⑥有2條對稱軸(正方形有4條)。
⑦具有不穩定性(易變形)。
長方形對角線的性質
1、具有平行四邊形的所有性質,對邊平行且相等,對角相等,鄰角互補,對角線互相平分,而且四個角都是直角;它的對角線相等,具有不穩定性(易變形)。
2、矩形也叫長方形。矩形是至少有三個內角都是直角的四邊形。矩形是一種特殊的平行四邊形,正方形是特殊的矩形。由於矩形是特殊的平行四邊形,故包含平行四邊形的性質。
10. 勾股定理是怎麼算的
勾股定理指直角三角形的兩條直角邊的平方和等於斜邊的平方,用數學語言表達:a²+b²=c²。
證明:
設△ABC中,∠C=90°,由餘弦定理c2=a2+b2-2abcosC,
因為∠C=90°,所以cosC=0。
所以a2+b2=c2。
勾股定理應用
勾股定理的逆定理是判斷三角形為鈍角、銳角或直角的一個簡單的方法,其中AB=c為最長邊:
1、如果a² + b² = c²,則△ABC是直角三角形。
2、如果a² + b² > c²,則△ABC是銳角三角形(若無先前條件AB=c為最長邊,則該式的成立僅滿足∠C是銳角)。
3、如果a² + b² < c²,則△ABC是鈍角三角形。