導航:首頁 > 計算方法 > 二次平方式的計算方法八年級上冊

二次平方式的計算方法八年級上冊

發布時間:2022-09-12 11:18:57

A. 2開平方計算方法

√2= 1.4142135623731 ……

√2 是一個無理數,它不能表示成兩個整數之比,是一個看上去毫無規律的無限不循環小數。早在古希臘時代,人們就發現了這種奇怪的數,這推翻了古希臘數學中的基本假設,直接導致了第一次數學危機。

根號二一定是介於1與2之間的數。

然後再計算1.5的平方大小……也就是一個用二分法求方程x^2=2近似解的過程。

(1)二次平方式的計算方法八年級上冊擴展閱讀:

無理數的發現:

公元前500年,畢達哥拉斯學派的弟子希伯索斯(Hippasus)發現了一個驚人的事實,一個正方形的對角線與其一邊的長度是不可公度的(若正方形的邊長為1,則對角線的長不是一個有理數),這一不可公度性與畢氏學派的「萬物皆為數」(指有理數)的哲理大相徑庭。

這一發現使該學派領導人惶恐,認為這將動搖他們在學術界的統治地位,於是極力封鎖該真理的流傳,希伯索斯被迫流亡他鄉,不幸的是,在一條海船上還是遇到畢氏門徒。被畢氏門徒殘忍地投入了水中殺害。科學史就這樣拉開了序幕,卻是一場悲劇。

B. 二次方怎麼

1、直接開平方法:
直接開平方法就是用直接開平方求解一元二次方程的方法.用直接開平方法解形如(x-m)2=n (n≥0)的 方程,其解為x=±根號下n+m .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以此方程也可用直接開平方法解.
(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丟解)
∴x=
∴原方程的解為x1=,x2=
9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解為x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax2+bx=-c
將二次項系數化為1:x2+x=-
方程兩邊分別加上一次項系數的一半的平方:x2+x+( )2=- +( )2
方程左邊成為一個完全平方式:(x+ )2=
當b^2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0 (註:X^2是X的平方)
將常數項移到方程右邊 3x^2-4x=2
將二次項系數化為1:x2-x=
方程兩邊都加上一次項系數一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接開平方得:x-=±
∴x=
∴原方程的解為x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項系數a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) ,(b^2-4ac≥0)就可得到方程的根.
例3.用公式法解方程 2x2-8x=-5
將方程化為一般形式:2x2-8x+5=0
∴a=2,b=-8,c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
∴原方程的解為x1=,x2= .
4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根.這種解一元二次方程的方法叫做因式分解法.
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)
(x+3)(x-6)=-8 化簡整理得
x2-3x-10=0 (方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0 (方程左邊分解因式)
∴x-5=0或x+2=0 (轉化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解.
2x2+3x=0
x(2x+3)=0 (用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0 (轉化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解.
注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解.
6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=,x2=- 是原方程的解.
x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解.
小結:
一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項系數化為正數.
直接開平方法是最基本的方法.
公式法和配方法是最重要的方法.公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定系數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解.
配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程.但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好.(三種重要的數學方法:換元法,配方法,待定系數法).

這些既是學法,又可從中找到題和答案。

C. 計算 初二數學平方公式

1、當y=1時,x=1,所以結果是4*32=128
2、原式=x的2n次方的三次方乘以y的三次方的n次方的平方就是2的三次方乘以三的平方等於72
3、就是2的四次方乘以四加上2的平方,提出2的平方就可以了,結果是17*4=68
4、把103換成100+3,把97換成100-3就好算多了
5、結果是-8*27*27*x的9次方*y的13次方
順便提出一下,我在電腦上打數學符號和公式相當困難,就這樣吧,遷就一下,就這就已經花了我好一會了,好好理解一下,這樣的題都不是很難的~還有啥問題直接留言就可以了

D. 怎麼計算二次平方根

怎麼計算二次平方根 用計算器就可以,當然筆算也可以,比較麻煩,類似於除法的一種演算法 一用計算機;二用二分法.. 算唄

E. 初二上冊平方根的加減乘除運算方法。方法詳細點例如:2+2√2=√4+√8=

有理數加無理數不能再化簡,在進行根式加減時應將根式化為最簡二次根式,被開方數同的根式加減時將與無理數相乘的有理數加減即可,有理數乘無理數不可再化簡,有理數除以無理數應分母有理化,(通常為(a+b)(a-b),無理數與無理數雷同與有理數與無理數即二次根式中的數乘除結果要化為最簡二次根式

閱讀全文

與二次平方式的計算方法八年級上冊相關的資料

熱點內容
歐萊雅洗面乳使用方法 瀏覽:815
win8怎麼設置鎖屏圖片在哪裡設置方法 瀏覽:937
爛地面地坪施工方法簡單 瀏覽:693
穩壓電路計算方法視頻 瀏覽:845
不用安全繩攀岩還有什麼方法 瀏覽:697
作業反應的教學方法 瀏覽:450
247乘101的簡便方法 瀏覽:104
可存放時間的計算方法 瀏覽:965
紅酒持杯的正確方法 瀏覽:551
熟板栗怎麼快速剝皮的方法 瀏覽:552
42乘98的簡便計算方法 瀏覽:820
斗魚直播技巧和方法 瀏覽:549
轉基因食品檢測方法 瀏覽:88
cam常用修模方法 瀏覽:997
如何選橫盤3個月的股票的方法 瀏覽:385
隨身聽手機轉介面使用方法 瀏覽:296
痔瘡鍛煉方法男士 瀏覽:453
減肥的正確方法vlog 瀏覽:305
葯物不良反應分析的主要方法 瀏覽:215
軋機水管安裝方法 瀏覽:605