『壹』 初中數學開根號怎麼開
方法分類如下:
1.完全平方數
把任何含完全平方數的根式化簡。完全平方數是一個數乘以自己得到的數,比如81就是9*9得到的。要簡化,直接去掉根號,換成平方根數即可。
比如121就是完全平方數, 11 x 11= 121 你可直接把根號移掉,寫成11就可。要想更簡單點,你要記住下面的頭十二個數的完全平方數:1 x 1 = 1, 2 x 2 = 4, 3 x 3 = 9, 4 x 4 = 16, 5 x 5 = 25, 6 x 6 = 36, 7 x 7 = 49, 8 x 8 = 64, 9 x 9 = 81, 10 x 10 = 100, 11 x 11 = 121, 12 x 12 = 144。
『貳』 求開根號的數學題目,怎麼算呀!
1、整數開平方步驟:
(1)將被開方數從右向左每隔2位用撇號分開;
(2)從左邊第一段求得算數平方根的第一位數字;
(3)從第一段減去這個第一位數字的平方,再把被開方數的第二段寫下來,作為第一個余數;
(4)把所得的第一位數字乘以20,去除第一個余數,所得的商的整數部分作為試商(如果這個整數部分大於或等於10,就改用9左試商,如果第一個余數小於第一位數字乘以20的積,則得試商0);
(5)把第一位數字的20倍加上試商的和,乘以這個試商,如果所得的積大於余數時,就要把試商減1再試,直到積小於或等於余數為止,這個試商就是算數平方根的第二位數字;
(6)用同樣方法繼續求算數平方根的其他各位數字。
其中的20為筆算公式常數!
要仔細,加油
還要
『叄』 數字的開根號的計算方法。
答案:√2≈1.414、1/2-√3≈0.5-1.732≈-1.232、2+√5≈2+2.236≈4.236、
√7-√6≈2.646-2.449≈0.197
比如:算術平方根(只取正數)
第一類:√2≈1.414,√3≈1.732 、√5≈2.236、√6≈2.449、√7≈2.646......
第二類:平方數的開根,√4=√2²=2,√9=√3²=3,√225=√15²=15,√256=√16²=16等等
舉例:√12=√(4×3)=√4×√3=2√3≈2×1.732
第三類:1、√ab=√a·√b﹙a≥0b≥0﹚ 這個可以交互使用.這個最多運用於化簡,如:√8=√4·√2=2√2
2、√a/b=√a÷√b﹙a≥0b﹥0﹚
3、√a²=|a|(其實就是等於絕對值)這個知識點是二次根式重點也是難點。
當a>0時,√a²=a(等於它的本身)
當a=0時,√a²=0
當a<0時,√a²=-a(等於它的相反數)
這個知識點和絕對值性質是一樣的!!!!
4、分母有理化:分母不能有二次根式或者不能含有二次根式。
⑴當分母中只有一個二次根式,那麼利用分式性質,分子分母同時乘以相同的二次根式。如:分母是√3,那麼分子分母同時乘以√3。
⑵當分母中含有二次根式,利用平方差公式使分母有理化。具體方法,如:分母是√5 -2(表示√5與2的差)要使分母有理化,分子分母同時乘以√5+2(表示√5與2的和)
方法就是:
1、把復雜的開根數化成簡單的,如 √12=2√3
2、如果一定要化成小數,才按題目要求保留小數的位數
(3)1開根號計算方法擴展閱讀:
平方的逆運算
根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用√ ̄表示,被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
『肆』 數學里開根號怎麼計算
類似除法,比較麻煩。
先以小數點往前,兩個兩個點。
最前的1位數或2位數,湊平方。
按除法計算,除數與得數一樣。
將余數與後兩位一起,
將得數乘20,再用1個單數去湊。如(20*原得數+湊得數)*湊得數
以此類推。
答案補充
先以小數點往前,兩個兩個點。最前的1位數是3,湊平方。按除法計算,除數與得數一樣為1。將余數2與後兩位50一起為250,將得數1乘20,再用1個單數去湊為8。如(20*1+8)*8=224以此類推。余數為26,再加後2位,為2600,除數為18*20+得數,得數湊為7即367*7=2569,餘31.到這里,已經得出開根號前3位為18.7.按照余數可以無限計算。
『伍』 根號怎麼算的
1、√ab=√a·√b﹙a≥0b≥0﹚ 這個可以交互使用.這個最多運用於化簡,如:√8=√4·√2=2√2
2、√a/b=√a÷√b﹙a≥0b﹥0﹚
3、√a²=|a|(其實就是等於絕對值)這個知識點是二次根式重點也是難點。當a>0時,√a²=a(等於它的本身);當a=0時,√a²=0;當a<0時,√a²=-a(等於它的相反數)
4、分母有理化:分母不能有二次根式或者不能含有二次根式。當分母中只有一個二次根式,那麼利用分式性質,分子分母同時乘以相同的二次根式。如:分母是√3,那麼分子分母同時乘以√3。
當分母中含有二次根式,利用平方差公式使分母有理化。具體方法,如:分母是√5 -2(表示√5與2的差)要使分母有理化,分子分母同時乘以√5+2(表示√5與2的和)
書寫規范:
根號的書寫在印刷體和手寫體是一模一樣的,這里只介紹手寫體的書寫規范。
1、寫根號:
先在格子中間畫向右上角的短斜線,然後筆畫不斷畫右下中斜線,同樣筆畫不斷畫右上長斜線再在格子接近上方的地方根據自己的需要畫一條長度適中的橫線,不夠再補足。
2、寫被開方的數或式子:
被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界,若被開方的數或代數式過長,則上方一橫必須延長確保覆蓋下方的被開方數或代數式。
以上內容參考:網路——根號
『陸』 一個數的根號怎麼算
舉個例子,求10的平方根
先將要開根數從尾數兩兩劃開,如1234567劃為1'23'45'67
10正好兩位,對10開整根,最大值3。余數1,在1後補兩個零,如還有數則把被開根數後兩位取下來,如1234567對1開根後把23取下(每次都兩位),接下來有點復雜,把上一次得數乘2再乘10再加上一個數,這個數滿足這樣一個關系,看例題,3*2*10+1,這個1也正好是得數的的二位(他們不是巧合,是必須這樣)同時還滿足100除以61的整得數是1,(如果加2則是62*2=124〉100了)接下來照這步做就是了。
希望能看明白,呵呵表達有點差。
3 1 6 ————得數
3√10
9
—
61√100 ——100=余的1補兩位,61=3*2*10+1
61
—
626√3900 ——626=31*2*10+6(31為前兩步的得數)
3756
——
14400
『柒』 1開根號等於多少
1開任何次方還是1,所以,你這個答案等於1。
『捌』 開根號怎麼算
開根號就像求一個數的幾次方的反義詞一樣,比如3的2次方是9,那麼9開根號2就是3。
在中學階段,涉及開平方的計算,一是查數學用表,一是利用計算器。而在解題時用的最多的是利用分解質因數來解決。如化簡√1024,因為1024=2^10,所以。
√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.
根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
成立條件:a≥0,b>0,n≥2且n∈N。
根號的書寫在印刷體和手寫體是一模一樣的,這里只介紹手寫體的書寫規范。
1、寫根號:
先在格子中間畫向右上角的短斜線,然後筆畫不斷畫右下中斜線,同樣筆畫不斷畫右上長斜線再在格子接近上方的地方根據自己的需要畫一條長度適中的橫線,不夠再補足。(這里只重點介紹筆順和寫法,可以根據印刷體參考本條模仿寫即可,不硬性要求)
2、寫被開方的數或式子:
被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界,若被開方的數或代數式過長,則上方一橫必須延長確保覆蓋下方的被開方數或代數式。
3、寫開方數或者式子:
開n次方的n寫在符號√ ̄的左邊,n=2(平方根)時n可以忽略不寫,但若是立方根(三次方根)、四次方根等,是必須書寫。
『玖』 數學公式根號怎麼計算
從個位起向左每隔兩位為一節,若帶有小數從小數點起向右每隔兩位一節,用「,」號將各節分開; 2.求不大於左邊第一節數的完全平方數,為「商」; 3.從左邊第一節數里減去求得的商,在它們的差的右邊寫上第二節數作為第一個余數; 4.把商乘以20,試除第一個余數,所得的最大整數作試商(如果這個最大整數大於或等於10,就用9或8作試商); 5.用商乘以20加上試商再乘以試商。如果所得的積小於或等於余數,就把這個試商寫在商後面,作為新商;如果所得的積大於余數,就把試商逐次減小再試,直到積小於或等於余數為止; 6.用同樣的方法,繼續求。 上述筆算開方方法是我們大多數人上學時課本附錄給出的方法,實際中運算中太麻煩了。我們可以採取下面辦法,實際計算中不怕某一步算錯!!!而上面方法就不行。 比如136161這個數字,首先我們找到一個和136161的平方根比較接近的數,任選一個,比方說300到400間的任何一個數,這里選350,作為代表。 我們計算0.5*(350+136161/350)得到369.5 然後我們再計算0.5*(369.5+136161/369.5)得到369.0003,我們發現369.5和369.0003相差無幾,並且,369^2末尾數字為1。我們有理由斷定369^2=136161 一般來說能夠開方開的盡的,用上述方法算一兩次基本結果就出來了。再舉個例子:計算469225的平方根。首先我們發現600^2<469225<700^2,我們可以挑選650作為第一次計算的數。即算 0.5*(650+469225/650)得到685.9。而685附近只有685^2末尾數字是5,因此685^2=469225 對於那些開方開不盡的數,用這種方法算兩三次精度就很可觀了,一般達到小數點後好幾位。 實際中這種演算法也是計算機用於開方的演算法