① 應力的計算公式是什麼!
主應力
應力分類:
同截面垂直的稱為正應力或法向應力,同截面相切的稱為剪應力或切應力。應力會隨著外力的增加而增長,對於某一種材料,應力的增長是有限度的,超過這一限度,材料就要破壞。對某種材料來說,應力可能達到的這個限度稱為該種材料的極限應力。極限應力值要通過材料的力學試驗來測定。
將測定的極限應力作適當降低,規定出材料能安全工作的應力最大值,這就是許用應力。材料要想安全使用,在使用時其內的應力應低於它的極限應力,否則材料就會在使用時發生破壞。
② 實驗應力分析的實驗方法
實驗應力分析方法目前已有電學的、光學的、聲學的以及其他方法。 有電阻、電容、電感等多種方法,而以電阻應變計測量技術應用較為普遍,效果較好。
①電阻應變計法
電阻應變計是一種能將構件上的尺寸變化轉換成電阻變化的變換器,一般由敏感柵、引線、粘結劑、基底和蓋層構成。將它安裝在構件表面。構件受載荷作用後,表面產生微小變形,敏感柵隨之變形,致使應變計產生電阻變化,其變化率和應變計所在處構件的應變成正比 。測出電阻變化,即可按公式算出該處構件表面的應變,並算出相應的應力。依敏感柵材料不同,電阻應變計分金屬電阻應變計和半導體應變計兩大類。另外還有薄膜應變計、壓電場效應應變計和各種不同用途的應變計,如溫度自補償應變計、大應變計、應力計、測量殘余應力的應變化等。
②電容應變計法
電容應變計是一種能將構件上的尺寸變化轉換成電容變化的變換器。試件變形時,兩電容極片間距隨之變動,引起電容變化。測出電容變化率,按公式可算出試件的應變 。電容 應 變計有弓形 、平板式和桿式等類型,多用於發電廠的管道、設備或核能設備的長期高溫應變測量,監視裂紋的形成和發展,以及對航空航天構件材料進行高溫性能測試等。 此法發展較快,方式較多,逐漸形成光測力學。經典的光彈性實驗技術已從二維、三維模型實驗(如光彈性法、光彈性應力凍結法)發展成為能用於工業現場測量的光彈性貼片法,用來解決扭轉和軸對稱問題的光彈性散光法,研究應力波傳播和熱應力的動態光彈性法和熱光彈性法,進行彈-塑性應力分析的光塑性法 , 以及研究復合材料力學的正交異性光彈性法 。除了上述 經典方法外 ,還有雲紋法、雲紋干涉法、全息干涉法、散斑干涉法、全息光彈性法、焦散線法等。此外還有80年代發展起來的光纖感測技術和數字圖像處理技術等。
①光彈性法
運用光學原理研究彈性力學問題的一種實驗應力分析方法。某些各向同性透明的非晶體高分子材料受載荷作用時,呈現光學各向異性,使一束垂直入射偏振光沿材料中的兩主應力方向分解成振動方向互相垂直、傳播速度不同的兩束平面偏振光;卸載後,又恢復光學各向同性。這就是所謂的暫時雙折射效應。用具有這種效應的透明塑料按一定比例製成零構件模型,置於偏振光場中,施加一定的載荷,模型上便產生干涉條紋。通過計算,就能確定模型受載時各部位的應力大小和方向。此法對應力集中區和三維內部應力問題的求解特別有效。
②雲紋法
通過測定雲紋並對其進行分析以確定試件的位移場或應變場的一種實驗分析法。其原理是,當柵板和柵片重疊時,因柵片牢固地粘貼在試件表面而隨之變形,遂使柵板和柵片上的柵線因幾何干涉而產生條紋即雲紋。可通過雲紋測定物體表面的等高線,以及板殼的撓度分布等。
③雲紋干涉法
幾何雲紋法與光學干涉法相結合的一種實驗分析法。將高密度衍射光柵精確復制在物體表面,並用激光束照射該光柵,便可通過光柵衍射波干涉形成的條紋圖,獲得物體表面的變形信息 。此法靈敏 度高 ,條紋對比度好;能進行全場分析,實時觀測,量程幾乎不受限制。
④全息干涉法
利用全息照相獲得物體變形前後的光波波陣面相互干涉所形成的干涉條紋圖進行物體變形分析的一種方法。全息照相是一種不用透鏡而能記錄和再現被攝物體的三維圖像的照相方法。它能把來自物體的光波波陣面的振幅和相位信息以干涉條紋形式記錄下來,又能在需要時再現出來,以觀察到物體的三維圖像。全息干涉法的主要內容是研究條紋圖的形成、條紋的定位以及對條紋圖的解釋。對於具有漫反射表面的不透明物體,條紋圖表示物體沿觀察方向的等位移線;對於透明的光彈性模型(如有機玻璃),則表示模型中主應力之和等於常數的等和線。常用的全息干涉法有雙曝光法、即時法和均時法。
⑤散斑干涉法
精確檢測物體表面各點位移的光學測試法。激光照射在漫反射物體表面時,由反射光波干涉形成的散斑隨物體變形或位移而變化。採用適當裝置,通過雙曝光法把變形前後的散斑記錄在一張全息底片上,經顯影定影後便可獲得存儲物體表面各點位移信息的散斑圖。用激光照射散斑圖,就顯出散斑干涉條紋。在進行光學傅里葉變換信息處理後,便可分析出位移信息。
⑥焦散線法
利用焦散線測量應變(或應力)奇異場力學參數的一種光學實驗法。當一束光垂直照射在一塊受載的帶有邊緣裂紋透明薄板試件的局部高應變場區域時,由於域內各處厚度的變化十分懸殊,使透過的光線發生強烈偏折和匯聚,在試件與像屏間的空間形成一個明亮的曲面,稱為焦散面。若用一個半透明屏幕切割此焦散面,就可看到一條明亮的曲線,即焦散線。通過光學和力學分析,可將焦散線的幾何參數與奇異場的力學參數間的關系建立起來,從而通過測量焦散線的幾何形狀,可求出有關的力學量。
⑦光纖感測技術
用光纖作「傳」和「感」的元件,當光通過光纖時,光的某一特性(如光強、相位、波長、偏振等)受到被測物理量的影響而發生變化,利用這一變化即可測得諸如聲壓、電場、磁場、位移、加速度、應變、溫度等。光纖感測器的獨特優點是:光纖是一種絕緣介質,不受電磁干擾,能耐高溫高壓,能在腐蝕和易燃、易爆等惡劣環境下工作;光纖靈敏度高,能探射極弱的信號和微小的信號變化;可做成便於應用的任何形狀;光纖作為傳輸介質,損耗低 ,可作遠距離遙測和遙控;能構成對各種物理量(如聲、電 、磁、溫度、轉動等)微擾敏感的器件。因此,光纖感測器在感測器領域內佔有重要地位。
⑧數字圖像處理技術
利用電子計算機對圖像信息進行採集、處理和分析的圖像信息處理技術。在實驗力學領域內,主要用來分析處理光測力學中光彈性法、雲紋干涉法、全息干涉法、散斑干涉法等的光學干涉條紋信息,獲取全面而有效的實驗數據,實現光測力學的圖像信息採集自動化和數據分析程序化。 有聲彈性法、聲發射技術和聲全息法等。
①聲彈性法
利用超聲剪切波的雙折射效應測量應力的一種方法。超聲波在有應力的介質中傳播時,其剪切波沿兩主應力方向發生偏振,兩偏振波以不同速度傳播。實驗和理論分析得到應力-光學定律 : 沿主應力方向的兩個超聲剪切波的速度差與兩主應力差成正比。該比例系數稱聲彈性系數,與材料的彈性常數有關。用此法可測量非透明材料的內部應力,並可測量焊接件的殘余應力。
②聲發射技術
構件在受力過程中產生變形或裂紋時 ,以彈性波形式釋放出應變能的現象稱為聲發射;利用接收的聲發射信號,對構件進行動態無損檢測的技術稱為聲發射技術。此技術可用來檢測裂紋和研究腐蝕斷裂過程,以及監視構件的疲勞裂紋擴展等;還可用來評價構件的完整性,判斷結構的危險程度。
③聲全息法
20世紀60年代發展起來的成像技術。其原理和全息照相相同,即利用波的干涉原理記錄物波的振幅和相位,並利用衍射原理再現物體的像。它的不同處是用超聲波代替光波。此法的成像解析度高,用於無損檢驗,可顯示試件內部缺陷的形狀和大小。 常見的有脆性塗層法、X射線應力測定法、比擬法等。
①脆性塗層法
把特殊的塗料噴塗在工程構件表面,以確定主應力方向和估計主應力大小的一種全場實驗方法。塗料噴塗到構件表面後,經過處理,就在構件表面結成脆性層。當此構件由於載入而產生的應變在某點達到一定的臨界值時,該點塗層就出現一條與主應力方向垂直的裂紋。連接同一載荷下所有裂紋的端點,其連線上各點是有相等的應力值,稱為等應力線。通過逐級載入,可得幾乎遍布整個塗層表面的裂紋圖和對應於不同載荷的等應力線,從而可直接觀察到構件表面各處主應力大小和方向的分布狀況。此法主要用來測出最大應力區和主應力方向,作為電阻應變計測量技術的輔助方法。
②X射線應力測定法
利用X射線穿透金屬晶格時發生衍射的原理,測量衍射角的變化並通過布拉格公式確定晶格的變化,從而算出金屬構件表面應力的一種實驗方法。此法可無損地測量構件中的應力或殘余應力,特別適於測量薄層和裂紋尖端的應力分布,是檢驗產品質量,研究材料強度,選用較佳工藝的一種重要手段。
③比擬法
根據兩種物理現象之間的比擬關系,通過一種物理現象的觀測試驗,研究另一種物理現象的方法。如果兩種物理現象中存在以形式相同的 數 學方程 描 述的物理量,它們之間便存在比擬關系,就可用一種較易測試的物理現象模擬另一種難以測試的物理現象,從而使試驗工作大為簡化。在實驗應力分析領域中,常用的有薄膜比擬、電比擬、電阻網路比擬、沙堆比擬。
③ 【交流】利用XRD如何測試晶格應力
通常在異質外延的薄膜中存有殘余應力,應力會影響電子器件的性能,引起器件成品率及可靠性問題。因此分析薄膜內部應力隨生長條件的變化是有一定意義的。c軸擇優生長的Zno薄膜,當(002)衍射峰的2θ值大於標准值時,就小於晶體材料的晶面間距值。說明薄膜沿C軸方向被壓縮,即樣品中存在著面內張應力。而當2θ值小於標准值時,樣品中存在著面內壓應力。根據公式 可以計算出薄膜內存在的應力,其中C0為粉末樣品的晶格常數。impcas(站內聯系TA)應該與衍射峰的位置有關。exciton-wu(站內聯系TA)如果為多晶樣品,可以考慮X射線側傾法。具體文獻見J. Appl. Phys. 104, 083516 (2008)靜聽花開幕(站內聯系TA)謝謝你們usst(站內聯系TA)個人理解應力反映表面/界面的能量,應力越大,表明表面/界面的能量越大。而應力是由於晶格失配/缺陷等復雜原因造成的,其直接表現就是晶格常數的變化。因而由x射線衍射測出晶格常數,再與標准晶格常數比較就能分析薄膜/顆粒的這些特性。doublewei(站內聯系TA)關於ZnO的XRD與應力的關系還是有很多的文獻,但是除了擇優生長的情況以外,其他情況是怎樣解釋呢?一直比較迷茫……;)
④ 應力值大小的確定
構造應力,不僅具有主應力或剪應力方向問題,還必須討論構造應力的大小或強度問題。在20世紀60年代以前,基本上只能根據岩石力學試驗資料來進行推斷,由於岩石力學試驗在模擬岩石所處的溫度、壓力、含孔隙水等條件方面可以做得較好,但對於構造變形的應力作用時間因素的模擬則至今仍很難突破,因而估算的數據經常偏大。20世紀70年代採用一些數學解析與顯微構造的估算方法差且效果不十分理想。
20世紀70年代後期以來,對於岩石超顯微構造的研究取得顯著的進步,利用礦物顆粒受到構造應力作用後,在電子顯微鏡下所表現出的位錯密度、動力重結晶顆粒大小、亞晶大小與差應力(σ1—σ3)值之間的關系,便可進行古構造應力值的半定量估算。這樣就使古構造應力的研究從定性階段走向半定量研究的新階段。
盡管對於用超顯微構造來估算差應力值的意見甚為分歧,有人甚至全盤否定,但最近十幾年的實踐證明,這還是一種行之有效的估算方法。超顯微構造古應力估算方法中,動力重結晶顆粒大小和亞晶大小的估演算法,一般認為最為可靠,對於韌性剪切帶中糜棱岩內的石英顆粒用此種方法最易於估算。近些年來此類成果在國內外均比較多。
然而,應該值得注意的是在進行古應力值估算的同時還必須進行同位素測年工作。否則,一個沒有地質時代概念的差應力值是很難有什麼用處的。不過在強構造變形帶內石英含量很高的岩石中進行同位素年代測定經常又很困難。與此不同,一向被人輕視的位錯密度法則有其突出的優點。由於位錯構造是在晶體流變的初始階段所形成的,一些學者常擔心位錯構造不穩定,因而對此種方法持懷疑態度。
近10年來,有關學者經過對我國各地區各地質時代的含橄欖石或石英的岩石進行了位錯密度的測定(約250件樣品),發現各時期均具獨特的位錯密度與相應的古應力值。從沒有出現過時代越老的岩石,數值也越大的現象。這說明礦物的晶內位錯構造在構造環境沒有根本性變化時,並沒有不斷地疊加,位錯構造形成後在「工作硬化(workhardening)」條件下可以相對穩定地保存下來,而不受後期構造運動的影響。後期構造運動可使早期的位錯構造發生重新滑動,但不增加其位錯密度。在不同構造層內所形成的晶內位錯構造,還有一個便於研究的優點,即比較容易利用各種綜合的方法進行年代測定工作,使這些古應力數據都有比較確定的年代概念。
因此,本項研究中也採用測試石英晶格位錯的方法確定古應力值的大小。本次研究一共測試了9種不同偉晶岩脈中石英顆粒的位錯密度。
⑤ 「應力」怎麼計算
在工程中,應力和應變是按下式計算的:應力(工程應力或名義應力)σ=P/A。,應變(工程應變或名義應變)ε=(L-L。)/L。式中,P為載荷;A。為試樣的原始截面積;L。為試樣的原始標距長度;L為試樣變形後的長度。
物體由於外因(受力、濕度、溫度場變化等)而變形時,在物體內各部分之間產生相互作用的內力,以抵抗這種外因的作用,並試圖使物體從變形後的位置恢復到變形前的位置。
物體由於外因(受力、濕度、溫度場變化等)而變形時,在物體內各部分之間產生相互作用的內力,以抵抗這種外因的作用,並試圖使物體從變形後的位置恢復到變形前的位置。
(5)晶格表面應力計算方法擴展閱讀:
物體由於外因(受力、濕度、溫度場變化等)而變形時,在物體內各部分之間產生相互作用的內力,單位面積上的內力稱為應力。應力是矢量,沿截面反向的分量稱為正應力,沿切向的分量稱為切應力。
物體中一點在所有可能方向上的應力稱為該點的應力狀態。只需用過一點的任意一組相互垂直的三個平面上的應力就可代表點的應力狀態,而其它截面上的應力都可用這組應力及其與需考察的截面的方位關系來表示。
如果作用在某一截面上的全應力和這一截面垂直,即該截面上只有正應力,切應力為零,則這一截面稱為主平面,其法線方向稱為應力主方向或應力主軸,其上的應力稱為主應力。如果三個坐標軸方向都是主方向,則稱這一坐標系為主坐標系。
一塊鋼板是由無數個鐵原子(包括其它成分的原子)所組成的,原子與原子之間之所以能夠緊密的連接在一起,而不像一盤沙子一樣,是鐵原子之間有強大的金屬鍵緊緊的「拉」在一起的,原子之間的「拉力」會由於相鄰原子之間的位置遠近、角度差異,而導致其「拉力」會在整個鋼板的平面內不是很均勻。
通俗的說:有些方向的「拉力」大,而有些方向的「拉力」小,但是,由於鋼板是在軋鋼機軋成平板後,這些鋼材立面分子之間的「拉力」會暫時趨於平衡,但是,如果將鋼板用刨床將其切削一部分,比如:切薄一半的厚度,這時,剩下的鋼板立馬將會發生變形,如:發生翹曲,這就是內應力在起作用。
⑥ 理論應力值怎麼算
應力計算公式: σ=N /An 。 力N與凈截面積An的比值是應力σ,即單位面積上所承受的力是應力。
應變計算公式ε= a / L 。變形量a與未受力前的原尺寸L之間的比值是應變ε,即單位長度上產生的變形量稱為應變。
測量工具
應力儀或者應變儀是來測定物體由於內應力的儀器。一般通過採集應變片的信號,而轉化為電信號進行分析和測量。
方法是:將應變片貼在被測定物上,使其隨著被測定物的應變一起伸縮,這樣裡面的金屬箔材就隨著應變伸長或縮短。很多金屬在機械性地伸長或縮短時其電阻會隨之變化。
應變片就是應用這個原理,通過測量電阻的變化而對應變進行測定。一般應變片的敏感柵使用的是銅鉻合金,其電阻變化率為常數,與應變成正比例關系。
⑦ 什麼是晶格力
應該叫晶格能
晶格能
晶格能又叫點陣能。它是在OK時1mol離子化合物中的正、負離子從相互分離的氣態結合成離子晶體時所放出的能量。用化學反應式表示時,相當於下面反應式的內能改變數。
aMz+(氣)+bXz-(氣)→MaXb(晶體)+U(晶格能)
晶格能也可以說是破壞1mol晶體,使它變成完全分離的自由離子所需要消耗的能量。晶格能越大,表示離子鍵越強,晶體越穩定。晶格能的數值有兩個來源。第一是理論計算值。它是根據離子晶體模型,考慮其中任一離子跟周圍異號離子間的吸引作用,以及跟其他同號離子間的排斥作用推導出下列近似公式計算得到的。
式中Z是離子價數,R0是一對離子間的平均距離,A是跟一定的晶格類型有關的常數,NA是阿佛加德羅常數,m是跟離子的電子層構型有關的常數,它的值可取5~12,ε0是真空電容率(8.85419×10-12庫-2·牛-1·米-2)。例如,氯化鈉晶體的Z+=Z-=1,R0=2.814×10-10m,m=8,A=1.7476,代入上述公式可得U=755kJ/mol。第二是熱化學實驗值。設計一個熱化學循環,然後根據實驗測得的熱化學量(如生成熱、升華熱、離解熱、電離能、電子親合勢)進行計算。影響晶格能大小的因素主要是離子半徑、離子電荷以及離子的電子層構型等。例如,隨著鹵離子半徑增大,鹵化物的晶格能降低;高價化合物的晶格能遠大於低價離子化合物的晶格能,如UTiN>UMgO>UNaCl。此外,Cu+和Na+半徑相近、離子電荷相同,但Cu+是18電子構型,對陰離子會產生極化作用,因此UCu2S>UNa2S。離子化合物都有較高的熔點和沸點,這是和它們離子晶體有很大的晶格能有關。由於UMgO>UNaF,MgO的熔點(2800℃)比NaF的熔點(988℃)高得多。晶格能的大小決定離子晶體的穩定性,用它可以解釋和預言離子晶體的許多物理和化學性質。例如,根據晶格能大小可以求得難以從實驗測出的電子親和勢,可以求得離子化合物的溶解熱,並能預測溶解時的熱效應。
⑧ 應力與應變怎麼求
應變=應力/彈性模。
根據軸力圖,得到響應軸處受力大小。這個軸力除以該處軸截面積,即是應力大小。應力大小是判斷材料是否塑形變形的依據。目前多數都會依賴軟體進行計算機分析。
①應力是單位面積上的作用力;
②應力不僅與岩石內部的受力情況有關,還與切面方向n的選擇有關。設O點在給定的直角坐標系中坐標為(x1,x2,x3),用σij(i=1,2,3)表示法線為i方向切面上j方向的應力,我們將得到九個量。
應力狀態
和應變狀態應變圓,也稱應變莫爾圓,是分析應變狀態的圖解法,其原理與應力圓類似,但應變圓的縱坐標為負剪應變的一半,橫坐標為線應變。在已知一點處的線應變、與剪應變時,即可作出應變圓,從而求得該點處主應變與的大小及其方向。在實驗分析的測試中常用各種形狀的應變花測量(見材料力學實驗)一點處三個方向的應變。
以上內容參考:網路-應力狀態和應變狀態