導航:首頁 > 計算方法 > 勾股定理三角形計算方法

勾股定理三角形計算方法

發布時間:2022-08-31 01:33:41

1. 三角形勾股定理公式是什麼

a²+b²=c²。

勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。如果設直角三角形的兩條直角邊長度分別是a和b,斜邊長度是c,那麼勾股定理的公式為a²+b²=c²。

勾股定理的應用

工程技術人員用勾股定理比較多,比如農村房屋的屋頂構造,就可以用勾股定理來計算,設計工程圖紙也要用到勾股定理,在求與圓、三角形有關的數據時,多數可以用勾股定理。

物理上也有廣泛應用,例如求幾個力,或者物體的合速度,運動方向古代也是大多應用於工程,例如修建房屋、修井、造車等等。

我國戰國時期另一部古籍《路史後記十二注》中就有這樣的記載:禹治洪水決流江河,望山川之形,定高下之勢,除滔天之災,使注東海,無漫溺之患,此勾股之所系生也。

這段話的意思是說:大禹為了治理洪水,使不決流江河,根據地勢高低,決定水流走向,因勢利導,使洪水注入海中,不再有大水漫溺的災害,是應用勾股定理的結果。

在做木工活時,要是有大塊的板材要定直角,就用勾股定理。角尺太小,在大板上畫的直角誤差大。在做焊工活時,做大的框架,有一定要直角的也是用勾股定理。比如說我要一個直角,就取一個直角邊3米,一個直角邊4米,讓斜邊有5米,那這個角就是直角了。

2. 三角形勾股定理怎麼

勾股定理:在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。例:a的邊長為3,b的邊長為4,則我們可以利用勾股定理計算出c的邊長。

勾股定理怎麼算三角形的高

①有一直角三角形ABC,設∠C=90°,作CD⊥AB,垂足為D.並設AD=x.

∵CD^2=AC^2-AD^2=BC^2-BD^2

∴AC^2-x^2=BC^2-(BC-x)^2

求得AD的長後,算出CD的長,即三角形斜邊上的高.

②有一直角三角形ABC,設∠C=90°,做CD⊥AB,垂足為D.

S△ABC=(AC*BC)/2=(CD*AB)/2.

算出CD的長,即三角形斜邊上的高.

a²+b²=c²

例子:以直角三角形為例,a的邊長為3,b的邊長為4,則我們可以利用勾股定理計算出c的邊長。

由勾股定理得,a²+b²=c²→3²+4²=c²

即,9+16=25=c²

c=√25=5

所以我們可以利用勾股定理計算出c的邊長為5。

3. 勾股定理怎麼算。是什麼公式

勾股定理計算:直角三角形的兩條直角邊的平方和等於斜邊的平方。a²+b²=c²。

勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。在中國,周朝時期的商高提出了「勾三股四弦五」的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。

(3)勾股定理三角形計算方法擴展閱讀:

勾股定理意義

1、勾股定理的證明是論證幾何的發端;

2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;

3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;

4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;

5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用.1971年5月15日,尼加拉瓜發行了一套題為「改變世界面貌的十個數學公式」郵票,這十個數學公式由著名數學家選出的,勾股定理是其中之首。

4. 勾股定理怎麼計算

勾股定理,直角三角形的兩條直角邊的平方和等於斜邊的平方.

A²+B²=C²

C=√(A²+B²)

√(120²+90²)=√22500=√150²=150

例如直角三角形 的三條邊是3(直角邊)、4(直角邊)、5(斜邊)

3²+4²=5²

5=√(3²+4²)=√5²=5

(4)勾股定理三角形計算方法擴展閱讀

勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。

參考資料勾股定理_網路

5. 勾股定理怎麼計算

勾股定理公式是a的平方加上b的平方等於c的平方。如果直角三角形兩直角邊分別為a,b,斜邊為C,那麼公式就是: a^2+b^2=c^2。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。

(5)勾股定理三角形計算方法擴展閱讀:

勾股定理簡介:

勾股定理是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等於斜邊的平方。中國古代稱直角三角形為勾股形,並且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個定理為勾股定理,也有人稱商高定理。

勾股定理現約有500種證明方法,是數學定理中證明方法最多的定理之一。勾股定理是人類早期發現並證明的重要數學定理之一,用代數思想解決幾何問題的最重要的工具之一,也是數形結合的紐帶之一。

在中國,商朝時期的商高提出了「勾三股四玄五」的勾股定理的特例。在西方,最早提出並證明此定理的為公元前6世紀古希臘的畢達哥拉斯學派,他用演繹法證明了直角三角形斜邊平方等於兩直角邊平方之和。

網路勾股定理

6. 三角形勾股定理公式是什麼

勾股定理僅適用於直角三角形。勾股定理表達式:a²+b²=c²。

勾股定理的公式是:在一個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和.如果直角三角形兩直角邊分別為a、b,斜邊為c,那麼a的平方+b的平方=c的平方。

意義

1、勾股定理的證明是論證幾何的發端。

2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理。

3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解。

4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理。

5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值。這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。

7. 勾股定理怎麼算。是什麼公式

勾股定理:在平面上的一個直角三角形中,兩個直角邊邊長的平方加起來等於斜邊長的平方。

(如下圖所示,即a² + b² = c²)

例子:

以上圖的直角三角形為例,a的邊長為3,b的邊長為4,則我們可以利用勾股定理計算出c的邊長。

由勾股定理得,a + b = c → 3 +4 = c

即,9 + 16 = 25 = c²

c =√25 = 5

所以我們可以利用勾股定理計算出c的邊長為5。

勾股定理的逆定理:

勾股定理的逆定理是判斷三角形為鈍角、銳角或直角的一個簡單的方法,其中AB=c為最長邊:

如果a² + b² = c²,則△ABC是直角三角形。

如果a² + b² > c²,則△ABC是銳角三角形(若無先前條件AB=c為最長邊,則該式的成立僅滿足∠C是銳角)。

如果a² + b² < c²,則△ABC是鈍角三角形。

8. 勾股定理計算方法

勾股定理,直角三角形的兩條直角邊的平方和等於斜邊的平方。

A²+B²=C²

C=√(A²+B²)

√(120²+90²)=√22500=√150²=150

例如直角三角形 的三條邊是3(直角邊)、4(直角邊)、5(斜邊)

3²+4²=5²

5=√(3²+4²)=√5²=5

(8)勾股定理三角形計算方法擴展閱讀:

定理用途

已知直角三角形兩邊求解第三邊,或者已知三角形的三邊長度,證明該三角形為直角三角形或用來證明該三角形內兩邊垂直。利用勾股定理求線段長度這是勾股定理的最基本運用。

意義

1、勾股定理的證明是論證幾何的發端;

2、勾股定理是歷史上第一個把數與形聯系起來的定理,即它是第一個把幾何與代數聯系起來的定理;

3、勾股定理導致了無理數的發現,引起第一次數學危機,大大加深了人們對數的理解;

4、勾股定理是歷史上第—個給出了完全解答的不定方程,它引出了費馬大定理;

5、勾股定理是歐氏幾何的基礎定理,並有巨大的實用價值.這條定理不僅在幾何學中是一顆光彩奪目的明珠,被譽為「幾何學的基石」,而且在高等數學和其他科學領域也有著廣泛的應用。

1971年5月15日,尼加拉瓜發行了一套題為「改變世界面貌的十個數學公式」郵票,這十個數學公式由著名數學家選出的,勾股定理是其中之首。

9. 勾股定理是怎麼算的

勾股定理指直角三角形的兩條直角邊的平方和等於斜邊的平方,用數學語言表達:a²+b²=c²。

證明:

設△ABC中,∠C=90°,由餘弦定理c2=a2+b2-2abcosC,

因為∠C=90°,所以cosC=0。

所以a2+b2=c2。

(9)勾股定理三角形計算方法擴展閱讀

勾股定理應用

勾股定理的逆定理是判斷三角形為鈍角、銳角或直角的一個簡單的方法,其中AB=c為最長邊:

1、如果a² + b² = c²,則△ABC是直角三角形。

2、如果a² + b² > c²,則△ABC是銳角三角形(若無先前條件AB=c為最長邊,則該式的成立僅滿足∠C是銳角)。

3、如果a² + b² < c²,則△ABC是鈍角三角形。

10. 三角形用勾股定理怎麼計算

勾股定理僅適用於直角三角形。勾股定理表達式:a²+b²=c²

勾股定理的公式是:在一個直角三角形中,斜邊邊長的平方等於兩條直角邊邊長平方之和.如果直角三角形兩直角邊分別為a、b,斜邊為c,那麼a的平方+b的平方=c的平方。

定理用途

已知直角三角形兩邊求解第三邊,或者已知三角形的三邊長度,證明該三角形為直角三角形或用來證明該三角形內兩邊垂直。利用勾股定理求線段長度這是勾股定理的最基本運用。

閱讀全文

與勾股定理三角形計算方法相關的資料

熱點內容
智遠一戶通使用方法 瀏覽:822
駕駛避免剮蹭的方法有哪些 瀏覽:734
胸上縫的訓練方法 瀏覽:106
太原公交乘車碼使用方法 瀏覽:944
三星手機撥號快捷鍵怎麼設置在哪裡設置方法 瀏覽:528
如何辨別鑽石好壞的方法 瀏覽:431
hdlc檢測方法 瀏覽:670
水培石斛蘭的種植方法 瀏覽:426
乾式變壓器項目研究試驗方法 瀏覽:386
青春期偏頭疼的原因和解決方法 瀏覽:66
瓷磚成型缺陷解決方法 瀏覽:392
一歲半亞麻籽油的食用方法 瀏覽:28
蟲害處理方法哪裡找 瀏覽:416
決戰平安京有哪些方法登錄 瀏覽:578
小腿劃傷怎麼處理方法 瀏覽:478
如何測量磷酸鹽的方法 瀏覽:976
平穩序列檢測方法 瀏覽:919
不打針治療咳嗽的方法 瀏覽:280
毛利潤30利潤計算方法 瀏覽:4
後束三角肌的鍛煉方法 瀏覽:56