1. 解方程的技巧。
不少學生一提到解方程就苦惱,其實只要掌握了技巧,解方程並沒有那麼難。
今天就跟大家分享一下解方程的方法和技巧,希望能給大家帶來幫助。
我們可以把課本中出現的方程分為三大類:一般方程、特殊方程和稍復雜的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 這幾種方程,我們可以稱為一般方程;
形如:a-x =b,a÷x =b這兩種方程,我們可以稱為特殊方程;
形如:ax+b=c , a(x-b)=c這兩種方程,我們可以稱為稍復雜的方程。
對於一般方程,如果方程是加上a,在利用等式的性質求解時,可以在方程兩邊同時減去a;同樣地,如果方程是減去a,在利用等式的性質求解時,可以在方程的兩邊同時加上a。乘和除也是一樣,總結為一句話就是一般方程很簡單,具體數字幫你辦,加減乘除要相反。
對於特殊方程,減去和除以的都是未知數x。求解時,減去未知數那就加上未知數,除以未知數那就乘未知數,這樣方程就變換成了一般方程,總結起來就是特殊方程別犯難,減去除以未知數,加上乘上變一般。
對於稍復雜的方程,可以採用「舍遠取近」的方法,意思是離未知數x遠的先去掉,離未知數x近的先看成整體保留,通過變換,方程就變得簡單,一目瞭然。總結起來就是若遇稍微復雜點,舍遠取近便瞭然。
當然,還有形如ax+bx=c等形式,能夠學會上面這幾種,對於學生來說,這些方程就顯得輕而易舉了。
第一種
x+a=b
x-a=b
ax=b
x÷a=b
此類題型可以在方程的左右兩邊同時加、減、乘、除相應的數。
示例:
x+3=5
解:x+3-3=5-3
x=2
x-3=2
解:x-3+3=2+3
x=5
3x=6
解:3x÷3=6÷3
x=2
x÷3=3
解:x÷3×3=3×3
x=9
第二種
ax+b=c
ax-b=c
關鍵是先把ax看成一個整體,明白先在方程兩邊同時加、減b,然後按第一種方法解方程。
示例:
3x+4=40
解:3x+4-4=40
3x=36
3x÷3=36÷3
x=12
3x-6=9
解:3x-6+6=9+6
3x=15
3x÷3=15÷3
x=5
第三種
a(x-b)=c
a(x+b)=c
這種類型題可以仿照第二種思路,把小括弧內的式子看作一個整體,也可以根據乘法分配律將原方程轉化為第二種形式的方程。
示例:
2(x-18)=16
解:2(x-18)÷2=16÷2
x-18=8
x-18+18=8+18
x=26
2(x-18)=16
解:2x-36=16
2x-36+36=16+36
2x=52
x=26
第四種
a-x=b
a÷x=b
這種題目的思路是引導學生把方程轉化成x+b=a或xb=a的形式,讓學生明白本題要在方程兩邊同時加或乘x,然後按第一種方法計算。
示例:
20-x=9
解:20-x+x=9+x
20=9+x
9+x=20
9+x-9=20-9
x=11
2.1÷x=3
解: 2.1÷x×x=3×x
2.1=3×x
3×x=2.1
3×x÷3=2.1÷3
x=0.7
2. 五年級數學解方程解法和思路
五年級的解方程是依據這些方法:
加數+加數=和可以推出加數=和-另一個加數
被減數-減數=差可以推出被減數=減數+差,減數=被減數-差
乘數x乘數=積可以推出乘數=積÷另一個乘數
被除數÷除數=商可以推出被除數=除數x商
除數=被除數÷商
如果是被除數÷除數=商有餘數
故被除數=除數x商+余數
除數=(被除數-余數)÷商
商=(被除數-余數)÷除數
根據上面的思路就可以解出很多道方程題
最簡單的x+2=4算出x=4-2=2
如果是含有多個x和數的五年級數學一元一次方程比如x+2x+x+5+3=20 先把含有x的未知項移項,x就是1x,算出4x,帶有數的移項,依據上面的定義加數+加數=和可以解出加數=和-另一個加數
即20-3-5=12算出4x=12,x=12÷4=3
如果方程左右兩邊都有數和未知數x,移項時要改變符號
比如6x-9=3x
左右移項右邊3x正變負,變成6x-3x,-9移到右邊變成正9,即3x=9,x=3
有括弧要根據加減法交換律,乘除法交換律,結合律還有分配律去解方程
3. 解方程的具體步驟
解一元方程:去分母、去括弧、移項、合並同類項和將未知數的系數化為1如果是兩元、三元的話那要把三元化為兩元方程,把兩元方程化為一元方程再解。解兩元方程的方法有:加減消元法和代入消元法。如果是二元二次方程組,可以把二元二次方程組轉為多個一元一次方程組從而實現消元。總之,解多元方程組的基本思想是消元。
解一元一次方程的五個步驟:
去分母、
去括弧、
移項、
合並同類項、
解分式方程的步驟為:先去分母在移項,最後驗根。解分式方程的基本思路是將分式方程化為整式方程,具體做法是「去分母」,即方程兩邊同乘最簡公分母,這也是解分式方程的一般思路和做法。
解分式方程的步驟
1解題步驟
①去分母
方程兩邊同時乘以最簡公分母,將分式方程化為整式方程;若遇到互為相反數時,不要忘了改變符號。
②按解整式方程的步驟
移項,若有括弧應去括弧,注意變號,合並同類項,把系數化為1,求出未知數的值。
③驗根
求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根。
驗根時把整式方程的根代入最簡公分母,如果最簡公分母等於0,這個根就是增根。否則這個根就是原分式方程的根。若解出的根是增根,則原方程無解。
4. 小學解方程方法與步驟
一、利用等式的性質解方程。
因為方程是等式,所以等式具有的性質方程都具有。
1、方程的左右兩邊同時加上或減去同一個數,方程的解不變。
2、方程的左右兩邊同時乘同一個不為0的數,方程的解不變。
3、方程的`左右兩邊同時除以同一個不為0的數,方程的解不變 。
二、兩步、三步運算的方程的解法
兩步、三步運算的方程,可根據等式的性質進行運算,先把原方程轉化為一步求解的方程,在求出方程的解。
三、根據加減乘除法各部分之間的關系解方程。
1、根據加法中各部分之間的關系解方程。
2、根據減法中各部分之間的關系解方程
3、根據乘法中各部分之間的關系解方程
4、根據除法中各部分之間的關系解方程。
解完方程後,需要通過檢驗,驗證求出的解是否成立。這就要先把所求出的未知數的值代入原方程,看方程左邊的得數和右邊的得數是否相等。若得數相等,所求的值就是原方程的解,若得數不相等,就不是原方程的解。
5. 解方程有幾種方法如何才能輕松求解
在我們學習的生涯中,其實很多人對於數學都是非常恐懼的,尤其是對於大部分的女生來說,她們在學習數學這方面就感覺到沒有天賦,而且學起來是非常吃力的。因此他們就會經常對數學上面的問題產生很大的困惑,所以有些人就會產生這樣的疑問,就是解方程有幾種方法呢?如何才能輕松求解?對這個問題的回答,在我個人看來,比如說有公式法,十字相乘法配方法,以及因數分解法等,我們要根據方程的具體形式來確定,下面我們具體來了解一下。
所以我們在平時的生活中,也應該要更多的去關注這方面的問題,對於每個人而言,了解這方面的問題都我們都是有一定的好處的,而且現在如果我們學會更多的求職方向的方法的話,那麼我們在今後遇到什麼數學難題的話,他可以給我們帶來很大的幫助。以上就是我總結的一些對於這一問題的認識。
6. 方程計算有什麼方法
方程計算有估演算法,應用等式的性質進行解方程,合並同類項,移項。使方程左右兩邊相等的未知數的值,叫做方程的解。求方程的解的過程叫做解方程。必須含有未知數等式的等式才叫方程。等式不一定是方程,方程一定是等式。
方程的含義概況
方程是指含有未知數的等式。是表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。
通過方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多種形式,如一元一次方程、二元一次方程、一元二次方程等等,還可組成方程組求解多個未知數。
7. 小學的解方程方法
小學的方程為一元一次方程,解法如下:
(1)去分母:在方程兩邊都乘以各分母的最小公倍數;
(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;
(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;
(4)合並同類項:把方程化成ax=b(a≠0)的形式;
(5)系數化成1。
(7)方程計算方法和思路擴展閱讀:
一元一次方程最早見於約公元前1600年的古埃及時期。公元820年左右,數學家花拉子米在《對消與還原》一書中提出了「合並同類項」、「移項」的一元一次方程思想。16世紀,數學家韋達創立符號代數之後,提出了方程的移項與同除命題。1859年,數學家李善蘭正式將這類等式譯為一元一次方程。
一元一次方程可以解決絕大多數的工程問題、行程問題、分配問題、盈虧問題、積分表問題、電話計費問題、數字問題。如果僅使用算術,部分問題解決起來可能異常復雜,難以理解。
而一元一次方程模型的建立,將能從實際問題中尋找等量關系,抽象成一元一次方程可解決的數學問題。例如在丟番圖問題中,僅使用整式可能無從下手,而通過一元一次方程尋找作為等量關系的「年齡」,則會使問題簡化。
8. 解方程式有哪些簡單的小技巧
方程的意義是,表示相等關系的式子叫等式,含有未知數的等式叫做方程。由此可見方程必須具備兩個條件:一是等式;二是等式中必須含有未知數。
以小學方程為例,有以下幾種技巧和方法:
一、利用等式的性質解方程。
因為方程是等式,所以等式具有的性質方程都具有。
1、方程的左右兩邊同時加上或減去同一個數,方程的解不變。
2、方程的左右兩邊同時乘同一個不為0的數,方程的解不變。
3、方程的左右兩邊同時除以同一個不為0的數,方程的解不變 。
二、兩步、三步運算的方程的解法
兩步、三步運算的方程,可根據等式的性質進行運算,先把原方程轉化為一步求解的方程,在求出方程的解。
三、根據加減乘除法各部分之間的關系解方程。
1、根據加法中各部分之間的關系解方程。
2、根據減法中各部分之間的關系解方程
在減法中,被減速=差+減數。
3、根據乘法中各部分之間的關系解方程
在乘法中,一個因數=積/另一個因數
例如:列出方程,並求出方程的解。
4、根據除法中各部分之間的關系解方程。
解完方程後,需要通過檢驗,驗證求出的解是否成立。這就要先把所求出的未知數的值代入原方程,看方程左邊的得數和右邊的得數是否相等。若得數相等,所求的值就是原方程的解,若得數不相等,就不是原方程的解。
(8)方程計算方法和思路擴展閱讀
應用范圍
1、根據問題變未知數
2、圍繞未知數,尋找問題中的等量關系
3、利用等量關系列方程
4、解方程,並作答
方程依靠等式各部分的關系,和加減乘除各部分的關系(加數+加數=和,和-其中一個加數=另一個加數,差+減數=被減數,被減數-減數=差,被減數-差=減數,因數×因數=積,積÷一個因數=另一個因數,被除數÷除數=商,被除數÷商=除數,商×除數=被除數)
9. 解方程應該怎麼算
步驟:
1、有分母先去分母。
2、有括弧就去括弧。
3、需要移項就進行移項。
4、合並同類項。
5、系數化為1求得未知數的值。
6、開頭要寫「解」。
例如:
3+x=18
解:x=18-3
x=15
4x+2(79-x)=192
解:4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
2x=34
x=17
πr=6.28(只取π小數點後兩位)
解這道題首先要知道π等於幾,π=3.141592……,只取3.14。
解: 3.14r=6.28
r=6.28/3.14
r=2
不過,x不一定放在方程左邊,或一個方程式子里有兩個x,這樣就要用數學中的簡便計算方法去解決它了。有些式子右邊有x,為了簡便算,可以調換位置。
(9)方程計算方法和思路擴展閱讀:
二元一次方程一般解法:
消元:將方程組中的未知數個數由多化少,逐一解決。
消元的方法有兩種:
1、代入消元
例:解方程組x+y=5① 6x+13y=89②
解:由①得x=5-y③ 把③帶入②,得6(5-y)+13y=89,解得y=59/7
把y=59/7帶入③,得x=5-59/7,即x=-24/7
∴x=-24/7,y=59/7
這種解法就是代入消元法。
2、加減消元
例:解方程組x+y=9① x-y=5②
解:①+②,得2x=14,即x=7
把x=7帶入①,得7+y=9,解得y=2
∴x=7,y=2
這種解法就是加減消元法。
10. 怎麼解方程,方程的思路
一元二次方程:
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。
一元二次方程有四種解法:
1、直接開平方法;2、配方法;3、公式法;4、分解因式法。
一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項系數化為正數。
直接開平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定系數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解。
配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。
但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好。(三種重要的數學方法:元法,配方法,待定系數法)。