導航:首頁 > 計算方法 > 小學47個計算方法

小學47個計算方法

發布時間:2022-08-09 17:27:13

Ⅰ 小學生數學快速計算的幾個方法

1、十幾乘十幾
口訣:十幾+另一數的個位,尾X尾,相加的和加上相乘的積,個位與十位對齊,注意要進位
如:15X16=240
用口訣計算:15+6=21,5X6=30,210+30=240
13X14=182用口訣計算:13+4=17,3X4=12,170+12=182
大家可以試著計算
11X13,12X16,16X17
2、個位與十位互換的兩位數相加
口訣:(個位+十位)X11
如:67+76=143用口訣計算:(6+7)X11=143
93+39=132用口訣計算:(9+3)X11=132
大家可以試著計算
34+43,56+65,78+87
3、個位與十位的兩位數相減
口訣:(被減數十位-被減數個位)X9
如:43-34=9用口訣計算:(4-3)X9=9
95-59=36用口訣計算:(9-5)X9=36
大家可以試著計算76-67,53-35,42-24

Ⅱ 加減乘除的計算方法 小學數學的加減乘除計算方法

先乘除,後加減,有括弧的先算括弧里的.整數加、減計演算法則:1)要把相同數位對齊,再把相同計數單位上的數相加或相減; 2)哪一位滿十就向前一位進.2、小數加、減法的計演算法則:1)計算小數加、減法,先把各數的小數點對齊(也就是把相同數位上的數對齊),2)再按照整數加、減法的法則進行計算,最後在得數里對齊橫線上的小數點點上小數點.(得數的小數部分末尾有0,一般要把0去掉.) 3、分數加、減計演算法則:1)分母相同時,只把分子相加、減,分母不變; 2)分母不相同時,要先通分成同分母分數再相加、減.4、整數乘法法則:1)從右起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對個因數的哪一位對齊; 2)然後把幾次乘得的數加起來.(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0.) 5、小數乘法法則:1)按整數乘法的法則算出積; 2)再看因數中一共有幾位小數,就從得數的右邊起數出幾位,點上小數點.3)得數的小數部分末尾有0,一般要把0去掉.6、分數乘法法則:把各個分數的分子乘起來作為分子,各個分數的分母相乘起來作為分母,(即乘上這個分數的倒數),然後再約分.7、整數的除法法則 1)從被除數的商位起,先看除數有幾位,再用除數試除被除數的前幾位,如果它比除數小,再試除多一位數; 2)除到被除數的哪一位,就在那一位上面寫上商; 3)每次除後餘下的數必須比除數小.8、除數是整數的小數除法法則:1)按照整數除法的法則去除,商的小數點要和被除數的小數點對齊; 2)如果除到被除數的末尾仍有餘數,就在余數後面補零,再繼續除.9、除數是小數的小數除法法則:1)先看除數中有幾位小數,就把被除數的小數點向右移動幾位,數位不夠的用零補足; 2)然後按照除數是整數的小數除法來除 10、分數的除法法則:1)用被除數的分子與除數的分母相乘作為分子; 2)用被除數的分母與除數的分子相乘作為分母

Ⅲ 小學數學等式的計算有幾種方法

一、細算、巧算,一分不錯過。(12分)5×24+76=25+75÷3=5×8+2÷2=(16+4÷2)×10=47-(21-15)×5=5×9-24÷8=1000÷125+560÷56=150-(25×4+5)=二、運算規則要遵守,誰先誰後我來辨。(9分)1、(148-111÷37)×5,先算()法,再算()法,最後算()法。2、200×5-(147+465),可以先同時算()法和()法,再算()。3、(39+105)÷(35-27),去掉兩個小括弧後,應先算()法,再算()法,最後算()法。三、用遞等式計算下面各題。(18分)(125+13×24)×5(98-121÷11)÷2921×(230-192÷4)(470+35×3)÷232600÷(1280-15×72)3774÷37×(65+35)

Ⅳ 小學四年級數學簡便計算方法技巧

小學四年級數學簡便計算例子演示19×24+19×46
解題思路:四則運算規則(按順序計算,先算乘除後算加減,有括弧先算括弧,有乘方先算乘方)即脫式運算(遞等式計算)需在該原則前提下進行

解題過程:
19×24+19×46

=19×(24+46)

=19×70

=1330

(4)小學47個計算方法擴展閱讀→豎式計算-計算結果:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;

解題過程:
步驟一:9×70=630

步驟二:1×70=700

根據以上計算結果相加為1330

存疑請追問,滿意請採納

Ⅳ 小學數學簡便計算公式

總結了小學數學的計算公式,及其靈活運用,簡便計算技巧。

①加法

加法交換律:a+b=b+a;

加法結合律:a+b+c=a+(b+c)=(a+b)+c;

②減法

a-b=-(b-a)

a-b-c=a-(b+c)

減法有一個口訣:加括弧,變符號。

③乘法

乘法交換律:a x b=b x a;

乘法結合律:a x b x c=a x (b x c);

乘法分配律:a x (b±c)=a x b±a x c;

小學數學試題中常考的一種題型-計算復雜數式。

經常就會用到乘法分配律,來提取公因數,簡化計算。

【例1】計算:7.19x1.36+3.13x2.81+1.77x7.19

分析:這道題就是加法結合律,乘法交換律,乘法分配律的綜合運用。

7.19x1.36+3.13x2.81+1.77x7.19

=7.19x(1.36+1.77)+3.13x2.81

=7.19x3.13+3.13x2.81

=(7.19+2.81)x3.13

=10x3.13

=31.3

④除法

a÷b÷c=a÷(b x c)(b,c不等於0);

a x b÷c=a÷cxb(c不等於0);

以上公式是解四則運算題目的基本關系式。

靈活學習,靈活運用。

它們除了正著用,有時候還得會倒著用。

【例2】計算:47.9x6.6+529x0.34;

分析:6.6+3.4=10,能不能想辦法把湊出一個3.4,然後讓3.4和6.6相加?

47.9x6.6+529x0.34

=47.9x6.6+529÷10x10x0.34

=47.9x6.6+52.9x3.4(3.4已經湊出來了)

=47.9x6.6+(47.9+5)x3.4

=47.9x6.6+47.9x3.4+5x3.4(6.6+3.4也湊出來了)

=47.9x(6.6+3.4)+17

=496

注意:例2題目中我們將乘法分配律倒著使用。

52.9x3.4=(47.9+5)x3.4=47.9x3.4+5x3.4

除此之外還用到了一個特別的公式。

529x0.34=529÷10x10x0.34

這個公式總結出來,即:

a x b=a÷c x c x b(c不等於0)

Ⅵ 小學數學計算方法有哪些

小學學的計算方法不外乎加減乘除
還有分數的運算,小數的運算和單位之間的互相運算等等

Ⅶ 請歸納小學數學簡便計算的幾種方法

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

Ⅷ 小學數學加減法速算方法與技巧

小學學生的加減法運算能力是非常重要的數學能力,運算能力不僅包括理解運算算理,掌握運算方法,還包括在遇到問題時能夠找到合理簡便的運算途徑。
速算不僅能簡化計算過程,化繁為簡,化難為易,同時又會提高計算效率。
因此在學習過程中,不僅需要掌握計演算法則,還需要學會一些運算技巧。

湊整"先計算
在進行加法運算時,若能對算式的各項恰當地分組,會使計算過程大大簡化。兩個數相加,若能恰好湊成整十、整百、整千、整萬…則先計算。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的"補數";79叫21的"補數",44也叫56的"補數",也就是說兩個數互為"補數"。
例題1.計算53+55+47
解:原式=(53+47)+55
=155
計算23+39+61
解:原式=23+(39+61)
=23+100
=123
對於不能直接湊整的,可以把其中一個數進行拆分,再湊整。
例題2.計算87+15
解:原式=87+13+2
=(87+13)+2
=100+2
=102
計算54+79
解:原式=33+21+79
=33+(21+79)
=33+100
=133
計算65+18+27
解:原式=60+2+3+18+27
=60+(2+18)+(3+27)
=60+20+30
=110
對於沒有直接湊整的數的,可以先湊整,最後再減去湊整的數。
例題3.計算:38+29+19
解:原式=(38+2)+(29+1)+(19+1)-4
=40+30+20-4
=90-4
=86
等差數列
計算等差連續數(等差數列)的和相鄰的兩個數的差都相等的一串數就叫等差連續數,又叫等差數列,如:
1,2,3,4,5,6,7,8,9
1,3,5,7,9
2,4,6,8,10
3,6,9,12,15
4,8,12,16,20等都是等差連續數
1、等差連續數的個數是奇數時,它們的和等於中間數乘以個數。
例題4.計算1+2+3+4+5+6+7+8+9
解:原式=5×9(中間數是5,共9個數)
=45
計算1+3+5+7+9+11+13
解:原式=7×7(中間數是7,共7個數)
=49
計算2+4+6+8+10
解:原式=6×5(中間數是6,共5個數)
=30
2、等差連續數的個數是偶數時,它們的和等於首數與末數之和乘以個數的一半。
例題5.計算1+2+3+4+5+6+7+8+9+10
共10個數,個數的一半是5,首數是1,末數是10。
解:原式=(1+10)×5
=11×5
=55
計算1+3+5+7+9+11+13+15
共8個數,個數的一半是4,首數是1,末數是15。
解:原式=(1+15)×4
=16×4
=64
計算2+4+6+8+10+12
共6個數,個數的一半是3,首數是2,末數是12。
解:原式=(2+12)×3
=14×3
=42
基準數法
先觀察各個加數的大小接近什麼數字,再把每個加數先按接近的數字相加,然後再把少算的加上,把多算的減去。
例題6.計算23+22+24+18+19+17
通過觀察發現所有的加項比較接近20
解:原式=20×6+3+2+4-2-1-3
=120+9-6
=123
計算103+102+101+99+98
所有加項比較接近100
解:原式=100×5+3+2+1-1-2
=500+3
=503
減法中的巧算
1、把幾個互為"補數"的減數先加起來,再從被減數中減去。
例題7.計算 400-63-37
解:原式= 400-(63+37)
=400-100
=300
計算1000-90-80-10-20
解:原式=1000-(90+80+10+20)
=1000-200
=800
2、先減去那些與被減數有相同尾數的減數。
例題8.計算4622-(622+149)
解:原式=4000-149
=3851
3、利用"補數"先湊整,再運算(注意把多加的數再減去,把多減的數再加上)。
例題9.計算505-397
解:原式=500+5-400+3(把多減的 3再加上)
=108
計算523-289
解:原式=523-300+11(把多減的11再加上)
=223+11
=234
計算358+997
解:原式=358+1000-3(把多加的3再減去)
=1355
加減混合式的運算
1、去括弧和添括弧的法則
在只有加減運算的算式里,如果括弧前面是"+"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都不變;如果括弧前面是"-"號,則不論去掉括弧或添上括弧,括弧裡面的運算符號都要改變,"+"變"-","-"變"+"。
例題10.計算200-20-10-30
解:原式=200-(10+20+30)
=200-60
=140
計算100-40+30
解:原式=100-(40-30)
=100-10
=90
2、帶符號"搬家"
例題11.計算 545+47-145+53
解:原式=545-145+47+53
=(545-145)+(47+53)
=400+100
=500
注意:每個數前面的運算符號是這個數的符號,如+47,-145,+53。而545前面雖然沒有符號,應看作是+545。
3、兩個數相同而符號相反的數可以直接"抵消"掉
例題12.計算18+2-18+4
解:原式=18-18+2+4
=6

Ⅸ 數學簡便計算,有哪幾種方法

數學簡便計算方法:

一、運用乘法分配律簡便計算

簡便計算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我們要怎麼拆呢?看誰更加的靠近整百或者整十,當然是101更好些,那我們就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,這樣該怎麼拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基準數法

在一系列數中找出一個比較折中的數來代表全部的數,要記得這個數的選取不能偏離這一系列數。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法結合律法

對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些「好朋友」,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改變數的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

這個方法實際上是運用了乘法分配律,將相同因數提取出來。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

Ⅹ 小學1-6年級所有數學計算公式

體積和表面積
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh

算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有餘數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c

分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等於分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數

長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤


什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積。
解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y

百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
要學會把小數化成分數和把分數化成小數的化發。

倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數。公因數有有限個。其中最大的一個叫做這幾個數的最大公約數。
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數。公倍數有無限個。其中最小的一個叫做這幾個數的最小公倍數。
互質數: 公約數只有1的兩個數,叫做互質數。相臨的兩個數一定互質。兩個連續奇數一定互質。1和任何數互質。
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分。
最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最後,得數必須化成最簡分數。
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數。
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數。
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8。
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數。
5的倍數的特徵:各位是0,5。
4(或25)的倍數的特徵:末2位是4(或25)的倍數。
8(或125)的倍數的特徵:末3位是8(或125)的倍數。
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數。
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數。
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數。
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數。
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數。
互質關系的兩個數,最大公約數為1,最小公倍數為乘積。
兩個數分別除以他們的最大公約數,所得商互質。
兩個數的與最小公倍數的乘積等於這兩個數的乘積。
兩個數的公約數一定是這兩個數最大公約數的約數。
1既不是質數也不是合數。
用6去除大於3的質數,結果一定是1或5。
奇數與偶數
偶數:個位是0,2,4,6,8的數。
奇數:個位不是0,2,4,6,8的數。
偶數±偶數=偶數 奇數±奇數=奇數 奇數±偶數=奇數
偶數個偶數相加是偶數,奇數個奇數相加是奇數。
偶數×偶數=偶數 奇數×奇數=奇數 奇數×偶數=偶數
相臨兩個自然數之和為奇數,相臨自然數之積為偶數。
如果乘式中有一個數為偶數,那麼乘積一定是偶數。
奇數≠偶數

整除
如果c|a, c|b,那麼c|(a±b)
如果,那麼b|a, c|a
如果b|a, c|a,且(b,c)=1, 那麼bc|a
如果c|b, b|a, 那麼c|a

小數
自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
純小數:個位是0的小數。
帶小數:各位大於0的小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如3. 141592654
無限循環小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限循環小數。如3. 141414……

無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……

利潤
利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率

閱讀全文

與小學47個計算方法相關的資料

熱點內容
確定物體重心的常用試驗方法有 瀏覽:834
快速緩解中暑想吐的方法 瀏覽:254
怎麼去除積雪的方法 瀏覽:61
機器人編隊控制方法研究 瀏覽:527
小孩快速降溫的方法 瀏覽:521
三步折帽子方法簡單又好看 瀏覽:450
骨密度計算方法公式骨礦骨面積 瀏覽:827
什麼方法能讓竹子的根死亡 瀏覽:195
熱天豬掉料的解決方法 瀏覽:486
紅米2指紋在哪裡設置方法 瀏覽:122
戴胸罩的正確方法視頻 瀏覽:469
尾氣不達標檢測方法 瀏覽:149
帶讀屬於什麼方法 瀏覽:427
早產兒體重快速增長的方法 瀏覽:308
最佳懷孕姿勢和方法 瀏覽:283
清明疊金元寶的簡單方法 瀏覽:373
四胞胎記憶方法視頻 瀏覽:465
煤氣口漏氣怎麼處理方法 瀏覽:999
數字萬用表交流電壓測量方法步驟 瀏覽:658
後臉部按摩儀使用方法 瀏覽:454