導航:首頁 > 計算方法 > 數值計算方法

數值計算方法

發布時間:2022-01-10 19:53:39

㈠ 傳統的數值計算方法包括哪些內容現在的數值計算方法包括哪些內容

隨著計算機和計算方法的飛速發展,幾乎所有學科都走向定量化和精確化,從而產生了一系列計算性的學科分支,如計算物理、計算化學、計算生物學、計算地質學、計算氣象學和計算材料學等,計算數學中的數值計算方法則是解決「計算」問題的橋梁和工具。我們知道,計算能力是計算工具和計算方法的效率的乘積,提高計算方法的效率與提高計算機硬體的效率同樣重要。科學計算已用到科學技術和社會生活的各個領域中。
數值計算方法,是一種研究並解決數學問題的數值近似解方法, 是在計算機上使用的解數學問題的方法,簡稱計算方法。
在科學研究和工程技術中都要用到各種計算方法。 例如,在航天航空、地質勘探、汽車製造、橋梁設計、 天氣預報和漢字字樣設計中都有計算方法的蹤影。
計算方法既有數學類課程中理論上的抽象性和嚴謹性,又有實用性和實驗性的技術特徵, 計算方法是一門理論性和實踐性都很強的學科。 在70年代,大多數學校僅在數學系的計算數學專業和計算機系開設計算方法這門課程。 隨著計算機技術的迅速發展和普及, 現在計算方法課程幾乎已成為所有理工科學生的必修課程。
計算方法的計算對象是微積分,線性代數,常微分方程中的數學問題。 內容包括:插值和擬合、數值微分和數值積分、求解線性方程組的直接法和迭代法、 計算矩陣特徵值和特徵向量和常微分方程數值解等問題。

㈡ 數值計算方法課後答案石鍾慈

addasdsaFJK.JFKLJK,MCNXZM,CNZ,MXCNXZCM,ZXNCM,ZNKLjdshad

㈢ 數值計算方法

1. 數值計算的結果是離散的,並且一定有誤差,這是數值計算方法區別與解析法的主要特徵。 2. 注重計算的穩定性。控制誤差的增長勢頭,保證計算過程穩定是數值計算方法的核心任務之一。 3. 注重快捷的計算速度和高計算精度是數值計算的重要特徵。 4. 注重構造性證明。 5.數值計算主要是運用MATLAB這個數學軟體來解決實際的問題 6.數值計算主要是運用有限逼近的的思想來進行誤差運算數值積分

㈣ 數值計算方法概述

在采礦工程中,數值模擬方法不僅能模擬岩體復雜的力學和結構特徵,還能很方便地解決現場監測過程中需要大量人力、物力而無法完成的、現有力學理論不能求解的復雜形體問題,並對礦山岩體穩定性進行預測與預報。

關於岩土工程的數值分析方法,很多學者都作過系統綜述[53,68,72],筆者只擬簡單介紹。岩土工程數值分析方法,主要分為三大類,如圖7-1所示。

圖7-1 邊坡工程數值分析方法

(1)連續介質數值分析方法

連續介質數值分析方法的理論基礎是彈(塑)性力學。因此,在該類數值分析方法公式的推導過程中,需要滿足基本方程和邊界條件。只是在求解手段上,採用了不同於彈性力學的各種近似解法。這類數值分析方法包括有限差分法、有限單元法和邊界單元法等,它適用於連續介質體的地下工程圍岩與結構的應力分析和位移求解。

(2)非連續介質數值分析方法

非連續介質數值分析方法的理論基礎是牛頓運動定律,它並不滿足結構的位移連續條件,但是可以求出結構在平衡狀態下的位移或者在不可能處於平衡狀態時的破壞模式。此外,盡管結構不受位移連續的約束,但應滿足給定的單元和交界面的本構定律。這類數值分析方法主要有離散單元法和不連續變形分析(DDA)。這些數值分析方法可用於分析節理岩體可能發生的不連續變形,如洞室圍岩附近岩塊的分離與滑落等。

(3)混合介質數值分析方法

混合介質數值分析方法是連續和不連續分析方法的耦合。在地下結構的某些區域(如洞室附近),圍岩體由於開挖影響而發生塊體的分離而不連續,在另外區域(如遠離洞室),則岩體一般仍相互聯系而處於連續狀態。因此,考慮兩種不同力學介質的耦合分析很必要。目前常見的耦合方法有有限元與離散元的耦合、邊界元與離散元的耦合等。混合介質吸取連續介質和非連續介質兩種數值分析方法中的優點,在可能發生不連續變形的岩體,採用非連續介質方法模擬,而遠離洞室的岩體一般仍處於連續狀態,可採用連續介質模型分析。

本章分別採用有限元強度折減法、有限元和離散元相結合的CDEM法、FLAC差分法,開展安家嶺露天礦露天井工聯合開採的數值模擬分析,研究露天開采和井工開採的相互作用及影響規律。

㈤ 求數值計算方法 第三版 李有法 朱建新 課後答案

數值計算方法如下:

1、有限元法:有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式。

藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數 形式,便構成不同的有限元方法。

在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元 上的近似解構成。

根據所採用的權函數和插值函數的不同 ,有限元方法也分為多種計算格式。從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格,從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。不同的組合 同樣構成不同的有限元計算格式。

2、多重網格方法:多重網格方法通過在疏密不同的網格層上進行迭代,以平滑不同頻率的誤差分量。具有收斂速度快,精度高等優點。

多重網格法基本原理微分方程的誤差分量可以分為兩大類,一類是頻率變化較緩慢的低頻分量;另一類是頻率高,擺動快的高頻分量。

一般的迭代方法可以迅速地將擺動誤差衰減,但對那些低頻分量,迭代法的效果不是很顯著。高頻分量和低頻分量是相對的,與網格尺度有關,在細網格上被視為低頻的分量,在粗網格上可能為高頻分量。

多重網格方法作為一種快速計算方法,迭代求解由偏微分方程組離散以後組成的代數方程組,其基本原理在於一定的網格最容易消除波長與網格步長相對應的誤差分量。

該方法採用不同尺度的網格,不同疏密的網格消除不同波長的誤差分量,首先在細網格上採用迭代法,當收斂速度變緩慢時暗示誤差已經光滑,則轉移到較粗的網格上消除與該層網格上相對應的較易消除的那些誤差分量,這樣逐層進行下去直到消除各種誤差分量,再逐層返回到細網格上。

3、有限差分方法:有限差分方法(FDM)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。

有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。

對於有限差分格式,從格式的精度來劃分,有一階格式、二階格式和高階格式。從差分的空間形式來考慮,可分為中心格式和逆風格式。考慮時間因子的影響,差分格式還可以分為顯格式、隱格式、顯隱交替格式等。

構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有三種形式:

一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。

4、有限體積法:有限體積法(Finite Volume Method)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。其中的未知數是網格點上的因變數的數值。

為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面。從積分區域的選取方法看來,有限體積法屬於加權剩餘法中的子區域法;從未知解的近似方法看來,有限體積法屬於採用局部近似的離散方法。簡言之,子區域法屬於有限體積發的基本方法。

有限體積法的基本思路易於理解,並能得出直接的物理解釋。離散方程的物理意義,就是因變數在有限大小的控制體積中的守恆原理,如同微分方程表示因變數在無限小的控 制體積中的守恆原理一樣。

限體積法得出的離散方程,要求因變數的積分守恆對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恆。

而有限體積法即使在粗網格情況下,也顯示出准確的積分守恆。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。有限單元法必須假定值在網格點之間的變化規律(既插值函數),並將其作為近似解。

有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值 ,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似。

在有限體積法中,插值函數只用於計算控制體積的積分,得出離散方程之後,便可忘掉插值函數;如果需要的話,可以對微分方程 中不同的項採取不同的插值函數。

5、近似求解的誤差估計方法:近似求解的誤差估計方法共有三大類:單元餘量法,通量投射法及外推法。

單元餘量法廣泛地用於以FEM離散的誤差估計之中,它主要是估計精確運算元的餘量,而不是整套控制方程的全局誤差。

這樣就必須假定周圍的單元誤差並不相互耦合,誤差計算採用逐節點演算法進行。單元餘量法的各種不同做法主要來自對單元誤差方程的邊界條件的不同處理辦法。基於此,該方法能夠有效處理局部的殘餘量,並能成功地用於網格優化程序。

通量投射法的基本原理來自一個很簡單的事實:精確求解偏微分方程不可能有不連續的微分,而近似求解卻可以存在微分的不連續,這樣產生的誤差即來自微分本身,即誤差為系統的光滑求解與不光滑求解之差。該方法與單元餘量法一樣,對節點誤差採用能量范數,故也能成功地用於網格優化程序。

單元餘量法及通量投射法都局限於局部的誤差計算(採用能量范數),誤差方程的全局特性沒有考慮。另外計算的可行性(指誤差估計方程的計算時間應小於近似求解計算時間)不能在這兩種方法中體現,因為獲得的誤差方程數量,階數與流場控制方程相同。

外推是指採用後向數值誤差估計思想由精確解推出近似解的誤差值。各類文獻中較多地採用Richardson外推方法來估計截斷誤差。無論是低階還是高階格式,隨著網格的加密數值計算結果都會趨近於准確解。但由於計算機內存與計算時間的限制,實際上不能採用這種網格無限加密的辦法。

6、多尺度計算方法:近年來發展的多尺度計算方法包括均勻化方法、非均勻化多尺度方法、以及小波數值均勻化方法、多尺度有限體積法、多尺度有限元法等。

該方法通過對單胞問題的求解,把細觀尺度的信息映射到宏觀尺度上,從而推導出宏觀尺度上的均勻化等式,即可在宏觀尺度上求解原問題。均勻化方法在很多科學和工程應用中取得了巨大成功,但這種方法建立在系數細觀結構周期性假設的基礎上,因此應用范圍受到了很大限制。

鄂維南等提出的非均勻化多尺度方法,是構造多尺度計算方法的一般框架。該方法有兩個重要的組成部分:基於宏觀變數的整體宏觀格式和由微觀模型來估計缺少的宏觀數據,多尺度問題的解通過這兩部分共同得到。

該方法基於多分辨分析,在細尺度上建立原方程的離散運算元,然後對離散運算元進行小波變換,得到了大尺度上的數值均勻化運算元。此方法在大尺度上解方程,大大地減小了計算時間。

該法在宏觀尺度上進行網格剖分,然後通過在每個單元里求解細觀尺度的方程(構造線性或者振盪的邊界條件)來獲得基函數。從而把細觀尺度的信息反應到有限元法的基函數里,使宏觀尺度的解包含了細觀尺度的信息。但多尺度有限元方法在構造基函數時需要較大的計算量。

藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數 形式,便構成不同的有限元方法。

在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元 上的近似解構成。

根據所採用的權函數和插值函數的不同 ,有限元方法也分為多種計算格式。從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格,從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。不同的組合 同樣構成不同的有限元計算格式。

2、多重網格方法:多重網格方法通過在疏密不同的網格層上進行迭代,以平滑不同頻率的誤差分量。具有收斂速度快,精度高等優點。

多重網格法基本原理微分方程的誤差分量可以分為兩大類,一類是頻率變化較緩慢的低頻分量;另一類是頻率高,擺動快的高頻分量。

一般的迭代方法可以迅速地將擺動誤差衰減,但對那些低頻分量,迭代法的效果不是很顯著。高頻分量和低頻分量是相對的,與網格尺度有關,在細網格上被視為低頻的分量,在粗網格上可能為高頻分量。

多重網格方法作為一種快速計算方法,迭代求解由偏微分方程組離散以後組成的代數方程組,其基本原理在於一定的網格最容易消除波長與網格步長相對應的誤差分量。

該方法採用不同尺度的網格,不同疏密的網格消除不同波長的誤差分量,首先在細網格上採用迭代法,當收斂速度變緩慢時暗示誤差已經光滑,則轉移到較粗的網格上消除與該層網格上相對應的較易消除的那些誤差分量,這樣逐層進行下去直到消除各種誤差分量,再逐層返回到細網格上。

3、有限差分方法:有限差分方法(FDM)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。

有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。

對於有限差分格式,從格式的精度來劃分,有一階格式、二階格式和高階格式。從差分的空間形式來考慮,可分為中心格式和逆風格式。考慮時間因子的影響,差分格式還可以分為顯格式、隱格式、顯隱交替格式等。

構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有三種形式:

一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。

4、有限體積法:有限體積法(Finite Volume Method)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。其中的未知數是網格點上的因變數的數值。

為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面。從積分區域的選取方法看來,有限體積法屬於加權剩餘法中的子區域法;從未知解的近似方法看來,有限體積法屬於採用局部近似的離散方法。簡言之,子區域法屬於有限體積發的基本方法。

有限體積法的基本思路易於理解,並能得出直接的物理解釋。離散方程的物理意義,就是因變數在有限大小的控制體積中的守恆原理,如同微分方程表示因變數在無限小的控 制體積中的守恆原理一樣。

限體積法得出的離散方程,要求因變數的積分守恆對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恆。

而有限體積法即使在粗網格情況下,也顯示出准確的積分守恆。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。有限單元法必須假定值在網格點之間的變化規律(既插值函數),並將其作為近似解。

有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值 ,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似。

在有限體積法中,插值函數只用於計算控制體積的積分,得出離散方程之後,便可忘掉插值函數;如果需要的話,可以對微分方程 中不同的項採取不同的插值函數。



5、近似求解的誤差估計方法:近似求解的誤差估計方法共有三大類:單元餘量法,通量投射法及外推法。

單元餘量法廣泛地用於以FEM離散的誤差估計之中,它主要是估計精確運算元的餘量,而不是整套控制方程的全局誤差。

這樣就必須假定周圍的單元誤差並不相互耦合,誤差計算採用逐節點演算法進行。單元餘量法的各種不同做法主要來自對單元誤差方程的邊界條件的不同處理辦法。基於此,該方法能夠有效處理局部的殘餘量,並能成功地用於網格優化程序。

通量投射法的基本原理來自一個很簡單的事實:精確求解偏微分方程不可能有不連續的微分,而近似求解卻可以存在微分的不連續,這樣產生的誤差即來自微分本身,即誤差為系統的光滑求解與不光滑求解之差。該方法與單元餘量法一樣,對節點誤差採用能量范數,故也能成功地用於網格優化程序。

單元餘量法及通量投射法都局限於局部的誤差計算(採用能量范數),誤差方程的全局特性沒有考慮。另外計算的可行性(指誤差估計方程的計算時間應小於近似求解計算時間)不能在這兩種方法中體現,因為獲得的誤差方程數量,階數與流場控制方程相同。

外推是指採用後向數值誤差估計思想由精確解推出近似解的誤差值。各類文獻中較多地採用Richardson外推方法來估計截斷誤差。無論是低階還是高階格式,隨著網格的加密數值計算結果都會趨近於准確解。但由於計算機內存與計算時間的限制,實際上不能採用這種網格無限加密的辦法。

6、多尺度計算方法:近年來發展的多尺度計算方法包括均勻化方法、非均勻化多尺度方法、以及小波數值均勻化方法、多尺度有限體積法、多尺度有限元法等。

該方法通過對單胞問題的求解,把細觀尺度的信息映射到宏觀尺度上,從而推導出宏觀尺度上的均勻化等式,即可在宏觀尺度上求解原問題。均勻化方法在很多科學和工程應用中取得了巨大成功,但這種方法建立在系數細觀結構周期性假設的基礎上,因此應用范圍受到了很大限制。

鄂維南等提出的非均勻化多尺度方法,是構造多尺度計算方法的一般框架。該方法有兩個重要的組成部分:基於宏觀變數的整體宏觀格式和由微觀模型來估計缺少的宏觀數據,多尺度問題的解通過這兩部分共同得到。

該方法基於多分辨分析,在細尺度上建立原方程的離散運算元,然後對離散運算元進行小波變換,得到了大尺度上的數值均勻化運算元。此方法在大尺度上解方程,大大地減小了計算時間。

該法在宏觀尺度上進行網格剖分,然後通過在每個單元里求解細觀尺度的方程(構造線性或者振盪的邊界條件)來獲得基函數。從而把細觀尺度的信息反應到有限元法的基函數里,使宏觀尺度的解包含了細觀尺度的信息。但多尺度有限元方法在構造基函數時需要較大的計算量。

㈥ 數值計算方法

數字信號處理是把信號用數字或符號表示成序列,通過計算機或通用(專用)信號處理設備,用數值計算方法進行各種處理,達到提取有用信息便於應用的目的。例如:濾波、檢測、變換、增強、估計、識別、參數提取、頻譜分析等。
一般地講,數字信號處理涉及三個步驟:
⑴模數轉換(A/D轉換):把模擬信號變成數字信號,是一個對自變數和幅值同時進行離散化的過程,基本的理論保證是采樣定理。
⑵數字信號處理(DSP):包括變換域分析(如頻域變換)、數字濾波、識別、合成等。
⑶數模轉換(D/A轉換):把經過處理的數字信號還原為模擬信號。通常,這一步並不是必須的。 作為DSP的成功例子有很多,如醫用CT斷層成像掃描儀的發明。它是利用生物體的各個部位對X射線吸收率不同的現象,並利用各個方向掃描的投影數據再構造出檢測體剖面圖的儀器。這種儀器中fft(快速傅里葉變換)起到了快速計算的作用。以後相繼研製出的還有:採用正電子的CT機和基於核磁共振的CT機等儀器,它們為醫學領域作出了很大的貢獻。
信號處理的目的是:削弱信號中的多餘內容;濾出混雜的雜訊和干擾;或者將信號變換成容易處理、傳輸、分析與識別的形式,以便後續的其它處理。

㈦ 數值計演算法

6.1.2.1 邊坡數值計算的安全系數確定

數值分析方法考慮岩土體應力應變關系,克服了極限平衡方法的缺點,為邊坡穩定分析提供了較深入的概念。

目前,數值計算的失穩判據主要有兩類:一是以數值計算不收斂作為失穩的標志;二是以廣義塑性應變或者等效塑性應變從坡腳到坡頂貫通作為邊坡破壞的標志。而用數值分析結果獲取邊坡安全系數也主要有兩種方法:強度折減法、數值計算與極限平衡的耦合分析法。

(1)強度折減法:首先選取初始折減系數,將岩土體強度參數進行折減,將折減後的參數輸入,進行數值計算,若程序收斂,則岩土體仍處於穩定狀態,然後需要再增加折減系數,直到程序恰好不收斂,此時的折減系數即為穩定或安全系數。[52]

(2)數值計算與極限平衡的耦合分析法:首先採用數值分析法,計算邊坡內的應力應變以及位移分布;然後將計算的應力分布結果,通過應力張量變換,求出指定滑動面上的應力分布;最後通過極限平衡方法求出與該滑動面對應的穩定性安全系數。[52]

6.1.2.2 邊坡數值計算方法存在的問題剖析

應該指出,盡管近年來數值模擬方法和理論方面取得了顯著的進展,但仍不能很好的適應岩土工程的復雜情況,其主要原因有兩方面:(1)數學模型的不確定性。由於岩體力學性質千變萬化(彈性、塑性、流變、應變硬化及應變軟化等),且具有復雜的結構特性(岩體結構、岩體介質結構及地質結構等),不但至今對岩體的失穩或破壞還缺少可靠的判據或准則,而且工程開挖方法、開挖步序對圍岩的力學狀態(應力和應變)及穩定條件具有重大的影響,在某些情況下還起到決定性的作用,這使得目前對於數學模型的建立,尤其是本構模型的給定還帶有相當程度的盲目性。(2)參數的不確定性。岩體的物理力學性質、初始地應力等參數多變,僅通過有限的現場調查和室內試驗來獲得參數輸入信息,數據往往具有很大的離散性,很難全面反映岩體真實情況。

「數學模型給不準」和「輸入參數給不準」的困難已成為岩體力學數值分析應用的「瓶頸」問題。事實上,無論數值分析技術多麼發達,它們總只是某種手段,關鍵還是對岩體基本特性的認識。

㈧ 數值計算方法陳根永答案

12+4不要回家啊那個小時好多一樣子了他的謝我就好意了他是我就這么時我不了他是的是你也跟

㈨ 數值計算方法題

顯然Xn>0
Xn+ι=Xn/2+2/Xn>=2(Xn/2*2/Xn)=2
則該序列下界
Xn+ι-Xn=Xn/2+2/Xn--Xn=2/Xn-Xn/2=(4-Xn^2)/4<=0
綜上所速該序列為單調減有下界序列

閱讀全文

與數值計算方法相關的資料

熱點內容
雙眼皮的正確方法圖片 瀏覽:783
深圳融資的正確方法 瀏覽:700
網店前中期的問題及解決方法 瀏覽:689
修剪平衡機的使用方法視頻 瀏覽:511
核桃的盤玩方法視頻 瀏覽:51
遞菜單的正確方法 瀏覽:654
oppo手機的簡訊攔截功能在哪裡設置方法 瀏覽:75
鑒別砷的方法 瀏覽:187
睡覺習慣的正確方法 瀏覽:271
微信語言設置在哪裡設置方法 瀏覽:37
婦科外敷包使用方法 瀏覽:762
蒲公英根作用及食用方法 瀏覽:942
溫州做月餅方法視頻教程 瀏覽:370
windows開機顯示內存不足解決方法 瀏覽:995
hlookup函數的使用方法及實例 瀏覽:326
腳生水泡怎麼處理方法 瀏覽:549
治療子宮小最有效方法 瀏覽:501
水質檢測溶氧儀分析方法 瀏覽:271
除靜電有什麼好方法嗎 瀏覽:283
快速縮陰方法千黛斯新浪知道 瀏覽:320