⑴ 測定粘度和密度的方法有哪些它們各適用哪些場合
粘度:毛細管法、蒽氏粘度法、旋轉粘度法、粘度杯法等密度:固體液體不一樣, 固體:浸水天平稱量,堆積法液體:密度計法,U型管振動法,比重瓶法。
(用平氏黏度計測定運動黏度或動力黏度) 照各葯品項下的規定,取毛細管內徑符合要求的平氏黏度計1支,在支管F上連接一橡皮管,用手指堵住管口2,倒置黏度計,將管口1插入供試品(或供試溶液,下同)中,自橡皮管的另一端抽氣,使供試品充滿球C與A並達到測定線m處,提出黏度計並迅速倒轉,抹去黏附於管外的供試品,取下橡皮管使連接於管口1上,將黏度計垂直固定於恆溫水浴中,並使水浴的液面高於球C的中部,放置15分鍾後,自橡皮管的另一端抽氣,使供試品充滿球A並超過測定線m,開放橡皮管口,使供試品在管內自然下落,用秒錶准確記錄液面自測定線m下降至測定線m處的流出時間。依法重復測定3次以上,每次測定值與平均值的差值不得超過平均值的±5%。另取一份供試品同樣操作,並重復測定3次以上。以先後兩次取樣測得的總平均值按下式計算,即為供試品的運動黏度或供試溶液的動力黏度。
運動黏度(mm/s)=Kt
動力黏度(Pa·s)=10·Kt·ρ
式中 K為用已知黏度的標准液測得的黏度計常數,mm/s;
t 為測得的平均流出時間, s;
ρ為供試溶液在相同溫度下的密度,Kg/m。
(2)(用旋轉式黏度計測定動力黏度) 照各葯品項下的規定,按照儀器說明書操作,並按下式計算供試品的動力黏度。
動力黏度(Pa·s)=K'α 式中 K'為用已知黏度的標准液測得的旋轉式黏度計常數;α為偏轉角。
⑵ 黏度的計算公式
黏度是測量流體內在摩擦力的所獲得的數值。當某一層流體的移動會受到另一層流體移動的影響時,此摩擦力顯得極為重要。摩擦力愈大,我們就必須施予更大的力量以造成流體的移動,此力量即稱為 」剪切(shear)」。剪切發生的條件為當流體發生物理性地移動或分散,如傾倒、散布、噴霧、混合等等。高黏度的流體比低黏度的材料需要更大的力量才能造成流體的流動。
牛頓以圖4-1的模式來定義流體的黏度。兩不同平面但平行的流體,擁有相同的面積」A」,相隔距離」dx」,且以不同流速」V1」和」V2」往相同方向流動,牛頓假設保持此不同流速的力量正比於流體的相對速度或速度梯度,即:
F/A = ηdv/dx
其中η與材料性質有關,我們稱為」黏度」。
速度梯度,dv/dx,為測量中間層的相對速度,其描述出液體所受到的剪切,我們將它稱為」剪速(shear rate)」,以S表示;其單位為時間倒數(sec-1)。
F/A項代表了單位面積下,剪切所造成的合力,稱為」剪力(shear stress)」,以F代表;其單位為」達因每平方公分(dyne/cm2)」。
使用這些符號,黏度計可以下列數學式定義:
η=黏度=F/S=剪力/剪速
黏度的基本單位為 」poise」。我們定義一材料在剪力為1達因每平方公分、剪速為1 sec-1下的黏度為100 poise。測量黏度時,你可能會遭遇到黏度的單位為 「Pa˙s」 或 「mPa˙s」 的情況,此為國際標准系統,且有時較被公制命名所接受。1 Pa˙s等於10 poise;1 mPa˙s等於1 cp。
牛頓假設所有的材料在固定溫度下,黏度與剪速是沒有相關的,亦即兩倍的力量可以幫助流體移動兩倍的速度。
就我們所知,牛頓的假設只有部分是正確的。
牛頓流體
牛頓稱具有此形式流動行為的所有流體,皆稱為」牛頓(Newtonian)」,然而這只是你可能遭遇到的流體中的其中一種而已。牛頓流體的特性可參考圖4-2;圖A顯示剪力(F)和剪速(S)之間為線性關系;圖B顯示在不同剪速下,黏度皆保持一定。典型的牛頓流體為水與稀薄的機油。
上述代表的意義即為在固定溫度下,不論你所使用的黏度計型號、轉子、轉速為何,牛頓流體的黏度皆保持一定。標准Brookfield黏度值為以Brookfield儀器在某一剪速范圍內所測之值,這就是為什麼牛頓流體可以在所有我們的黏度計型號下操作。牛頓流體明顯地為最容易測量的流體-只要拿出你的黏度計並操作它即可。不幸的是,更常見且更復雜的流體-非牛頓流體,我們將在下一節中介紹。
非牛頓流體概略的定義為F/S的關系不為常數,亦即當施予不同的剪速,剪力並不隨著相同比例變化(或甚至同一方向)。這些流體的黏度會受到不同剪速的影響,同時,不同型號黏度計的設定參數、轉子、轉速都會影響到非牛頓流體的黏度值。此測量的黏度值稱為流體的」表觀黏度(apparent viscosity)」,其值為正確的只有當實驗的參數值被正確的設定且精準的測得。
非牛頓流體流動可以想像成流體為不同形狀和大小的分子所組成,當它們流經彼此,亦即流動發生時,需要多少力量才能移動它們將取決於它們的大小、形狀及黏著性。在不同的剪速下,排列的方式將會不同,而且需要更多或更少的合力才能保持運動。
辨別不同非牛頓流體的行為,可由剪速的差異得到流體黏度的變化,常見非牛頓流體的形式包括:
擬塑性的(pseudoplastic):此形式流體的特性為當剪速增加時,會伴隨著流速的減少,其可能為最常見的非牛頓流體。擬塑性流體包括油漆、乳液和各種不同形式的流體。此類流體的行為有時候可稱為」shear thinning」。
膨脹性的(diltant):膨脹性的流體其特性為流速隨著剪速的增加而增加。雖然膨脹性流體不如擬塑性流體常見,然而膨脹性流體常可由存在有不會聚集固體的流體中看到,如泥漿、糖果合成物、玉米澱粉類與水的混合物以及沙/水混合物。此類流體的行為也可稱為」shear thickening」。
塑性的(plastic):此類流體的行為就如同固體處在靜電的環境中。在流體流動前,我們就必須先施予流體某一力量,此力量稱為「屈服力(yield value)」。此類流體典型的例子為蕃茄醬,其產值造成蕃茄醬無法直接從罐子中倒出,除非我們先搖動或敲擊。當產值超過上限值時,流體開始流動。塑性流體包含有牛頓流體、擬塑性流體、膨脹性流體的特性。
到目前為止我們只有討論非牛頓流體剪速的效應,當我們同時考慮時間效應時,有會有什麼問題發生?此問題使得我們必須討論其它兩類非牛頓流體:」搖變性的(thixotropic)」 和 「流變性的(rheopectic
⑶ 黏度測定法的方法
(用平氏黏度計測定運動黏度或動力黏度) 照各葯品項下的規定,取毛細管內徑符合要求的平氏黏度計1支,在支管F上連接一橡皮管,用手指堵住管口2,倒置黏度計,將管口1插入供試品(或供試溶液,下同)中,自橡皮管的另一端抽氣,使供試品充滿球C與A並達到測定線m<[2]>處,提出黏度計並迅速倒轉,抹去黏附於管外的供試品,取下橡皮管使連接於管口1上,將黏度計垂直固定於恆溫水浴中,並使水浴的液面高於球C的中部,放置15分鍾後,自橡皮管的另一端抽氣,使供試品充滿球A並超過測定線m<[1]>,開放橡皮管口,使供試品在管內自然下落,用秒錶准確記錄液面自測定線m<[1]>下降至測定線m<[2]>處的流出時間。依法重復測定3次以上,每次測定值與平均值的差值不得超過平均值的±5%。另取一份供試品同樣操作,並重復測定3次以上。以先後兩次取樣測得的總平均值按下式計算,即為供試品的運動黏度或供試溶液的動力黏度。
運動黏度(mm<2>/s)=Kt
動力黏度(Pa·s)=10<6>·Kt·ρ
式中 K為用已知黏度的標准液測得的黏度計常數,mm<2>/s<2>;
t 為測得的平均流出時間, s;
ρ為供試溶液在相同溫度下的密度,Kg/m<3>。 (用旋轉式黏度計測定動力黏度) 照各葯品項下的規定,按照儀器說明書操作,並按下式計算供試品的動力黏度。
動力黏度(Pa·s)=K'α 式中 K'為用已知黏度的標准液測得的旋轉式黏度計常數;α為偏轉角。 (用烏氏黏度計測定特性黏數) 取供試品,照各品種項下的規定製成一定濃度的溶液,用3號垂熔玻璃漏斗濾過,棄去初濾液(約1ml),取續濾液(不得少於7ml)沿潔凈、乾燥烏氏黏度計的管2內壁注入B中,將黏度計垂直固定於恆溫水浴(水浴溫度除另有規定外,應為25℃±0.05℃)中,並使水浴的液面高於球C,放置15分鍾後,將管口1、3各接一乳膠管,夾住管口3的膠管,自管口1處抽氣,使供試品溶液的液面緩緩升高至球C的中部,先開放管口3,再開放管口1,使供試品溶液在管內自然下落,用秒錶准確記錄液面自測定線m<[1]>下降至測定線m<[2]>處的流出時間,重復測定兩次,兩次測定值相差不得超過0.1秒,取兩次的平均值為供試液的流出時間(T)。取經3號垂熔玻璃漏斗濾過的溶劑同樣操作,重復測定兩次,兩次測定值應相同,為溶劑的流出時間(T<[0]>)。按
下式計算特性黏數:
1nη<[r]>
特性黏數[η]=────
c
式中 η<[r]>為T/T<[0]>;
c為供試液的濃度,g/ml。
⑷ 黏度的測定
方法提要
所謂黏度即內摩擦系數。兩個相對移動的液層之間的相互作用力 (稱為內摩擦力) f,與該兩液層間垂直於層面的速度梯度 和液層的面積 S 有如下關系:
岩石礦物分析第四分冊資源與環境調查分析技術
式中: η 為內摩擦系數 (Pa·s) ,為比例常數,這就是通常所謂的動力黏度。
將上式移項,則得:
岩石礦物分析第四分冊資源與環境調查分析技術
通常採用旋轉式高溫黏度計測定煤灰黏度,其基本工作原理是:在黏度計的高溫爐中放一坩堝,將煤樣放入坩堝中加熱熔融。在熔體中插入一耐高溫和耐腐蝕的圓柱體,用馬達帶動圓柱體或坩堝旋轉(一般多採用靜止坩堝的方式),使熔體和圓柱體間產生相對運動,以下述兩種方式之一測定黏度:一種是由帶動圓柱體做勻速轉動的直流馬達所消耗的電流來確定黏度;另一種由懸掛圓柱體的彈性金屬絲產生的扭轉角來確定黏度。
本法採用後一種方式。馬達通過一彈性金屬絲帶動一圓柱體做勻速轉動,圓柱體浸沒在黏滯介質中,在介質黏滯力的作用下,彈性金屬絲產生扭轉,在金屬絲的彈性形變范圍內和轉速恆定的條件下,扭轉角φ正比於介質的黏滯力,亦即正比於液體的黏度:η=Kφ。
以已知黏度的標准物質標定黏度計,即求出K值,即可根據實際測定中的扭轉角!求出待測熔體的黏度。在實際分析中,一般是作出校準曲線(η-φ關系曲線),然後根據煤樣測定時的扭轉角φ值,從曲線上查出相應的黏度。
方法適於測定煤灰的動力黏度,也可用來測定爐渣、玻璃等物質的動力黏度。
儀器裝置
高溫黏度計煤灰渣黏度計必須滿足以下條件:①能測定牛頓流體和塑性流體的黏度;②能在600~1700℃范圍內連續調節溫度,並使任一指定溫度長時間穩定在±2℃;③黏度測量范圍為1~100Pa·s,解析度0.1Pa·s;④有足夠長的恆溫帶;⑤煤樣周圍的氣氛性質(氧化-還原性)可以控制。鋼絲扭矩式黏度計由供氣系統、高溫爐、測量系統和控制系統組成,黏度測量范圍l~103Pa·s,最高工作溫度為1700℃。
鋼絲直徑0.25~0.30mm。
測桿鉬製品,直徑4mm,長320mm,一端帶直徑10mm、長10mm的圓柱體。
坩堝剛玉製品,內徑30mm,外徑36mm,高50mm,耐火度1900℃以上。
試劑
氫氣。
氮氣。
標准黏度物質硅油:黏度約為1Pa·s、5Pa·s、10Pa·s、25Pa·s、50Pa·s和100Pa·s,用於常溫下標定黏度計,其黏度用罕泊黏度計在(20±1)℃下測定。硼酐:用於高溫下標定黏度計,其黏度已用硅油或其他常溫標准黏度物質標定過的黏度計,在600~1200℃下測定。
試驗准備
1)鎢-錸熱電偶的焊接和安裝。鎢-錸熱電偶的熱端應用電弧焊接;如無條件焊接,用砂紙擦凈電偶絲後擰緊也可。鎢-錸熱電偶應裝在耐火度在1900℃以上的雙孔剛玉管內,然後將之從爐底插入爐膛,並使其熱端位於爐膛高溫恆溫帶下部並距其邊緣約5mm處。電偶安裝好後盡量避免挪動,以免損壞。高溫下插入高溫爐內的熱電偶可能會出現漏電現象,這主要是由於高溫時耐火材料電阻降低的緣故,如Al2O3含量65%~95%的耐火磚在室溫下的電阻率為1.33×108Ω·cm,但1500℃時的電阻率為1.1×103Ω·cm。因此在安裝電偶時,其熱端應避免和坩堝底及爐膛壁接觸,如仍發生漏電現象,可在鎢-錸電偶熱端再繞上一根負極材料如鉬絲,並將之引出接地。鎢-錸電偶的冷端應放在冰水中,以保持0℃,然後通過普通金屬導線與電位差計相接。
2)高溫恆溫帶的確定。從爐子下部插入一熱電偶,其熱端位於爐膛中央,作為基準電偶;然後從爐子上部插入另一熱電偶,其熱端與基準電偶熱端緊鄰但不接觸。按照測定黏度的操作步驟以基準電偶為准。將爐溫升到1700℃並恆溫5~10min,讀取上電偶指示溫度。然後將上電偶上移或下移10mm,恆溫5~10rnin,讀取該點溫度,再將上電偶上移或下移10mm,恆溫5~10rnin,再讀取溫度。如是測定數個溫度點,直至最高溫度點與最低溫度點的溫差超過5℃為止,根據測定結果確定溫差在5℃范圍內的區域。然後逐漸降低溫度,按上述方法再測定2~3個溫度下的恆溫區。最後以各溫度下各點溫度差都在5℃范圍內的區域作為爐子高溫恆溫區,該區的長度應在40mm以上。或高溫爐首次使用,加熱元件更換和爐子使用較長時間後都應測定和重新測定高溫恆溫區。
3)熔體溫度的標定。在實際測定中,熔體的溫度與熔體容器外部電偶的指示溫度有一定的差異,故應進行熔體溫度的標定。
圖73.32 測定熔體實際溫度的裝置
圖73.32為熔體溫度標定示意圖。標定的具體步驟如下:在一剛玉坩堝中插入一根一端封閉的剛玉管,剛玉管四周放置已熔融過的熔渣碎塊。將帶剛玉管的坩堝放入高溫爐,並固定在坩堝底部與電偶熱端相距2~3mm處。在剛玉管中插入另一支電偶並使其熱端觸及管底。按照黏度測定步驟,將爐子逐漸加熱到1700℃,灰渣全部熔融後恆溫10min,測出上下電偶指示溫度。然後以50℃的間隔降低溫度,並測出該溫度下的上下電偶指示溫度,直至溫度降到1200℃。以基準電偶指示溫度為橫坐標,上電偶指示溫度為縱坐標作出標定曲線。溫度600~1200℃范圍內的熔體溫度標定,可使用硼酐或玻璃作熔融介質。
4)黏度計標定。
a.常溫標定法。用黏度約為1Pa·s、5Pa·s、10Pa·s、25Pa·s、50Pa·s和100Pa·s的硅油為測定介質,在20±1℃下,用鋼絲扭矩式黏度計測定相應的扭轉角。以硅油黏度值為縱坐標,扭轉角為橫坐標,繪制黏度-扭轉角(或毫秒計讀數)曲線。所用硅油應為經檢定的黏度已知的標准物質,在無標准硅油情況下,可用罕泊黏度計(即落球式黏度計)測定所用硅油黏度。
b.高溫標定法。用硼酐或玻璃為測定介質,在黏度為1~100Pa·s相應溫度范圍內,用鋼絲扭矩式黏度計測定不同溫度下的扭轉角。以硼酐或玻璃黏度值為縱坐標,扭轉角為橫坐標,繪制黏度-扭轉角(或毫秒計讀數)曲線。所用硼酐或玻璃應為經檢定的黏度和溫度關系已知的標准物質,在無標准硼酐或標准玻璃的情況下,可用已經在常溫下標定過的鋼絲扭矩式黏度計測定硼酐或玻璃的黏度。硼酐黏度測定方法:取破碎成5~15mm的小塊硼酐50g左右,按煤灰黏度測定步驟,從1200℃開始,每降溫50℃測定一個黏度值,直至600℃。黏度計應定期標定,特別是在更換鋼絲後應該標定。黏度計標定的試驗條件,特別是電動機轉速、鋼絲材料、直徑和長度、測桿材料尺寸及插入熔體的深度應與煤灰黏度測定時相同。
5)灰樣的制備。將粒度小於0.2mm的空氣乾燥煤樣在大灰皿中鋪成薄層,將帶樣灰皿放入冷高溫爐中,按灰分測定標准程序由室溫加熱到815℃,並在此溫度下灼燒至完全灰化。每個煤灰樣至少為150~200g。取灰樣100~120g,用50g/L糊精溶液濕潤成泥狀,做成直徑約10mm的小球,在室溫下晾乾或低溫下烤乾。
分析步驟
將一坩堝捆緊在用直徑1.5~2mm的鉬絲製作的、長度與坩堝底部至爐口距離相等、兩端彎成90°的掛鉤上,然後穩定地吊在爐膛中。坩堝應位於爐膛高溫恆溫帶,其底部距鎢鉬電偶熱端2~3mm處。
轉動黏度計懸臂,使測桿對准高溫爐爐口中央。開動黏度計,觀察測桿是否同心旋轉,如有明顯擺動,應更換測桿或將其調直,並調節測量系統各接頭,使電動機軸、鋼絲和測桿在同一軸線上。慢慢降下黏度計懸臂至測桿剛好觸及坩堝底部,記下高度標尺讀數H1(mm),然後提起測桿。將測桿插入帶水的坩堝中,開動黏度計,測定並記錄零點讀數。
往爐內以500mL/min的流量通入氫氣;往冷卻水套中通入冷水。接通高溫爐電源,按以下升溫速度升溫:<1200℃,10~15℃/min;1200~1500℃,5~7℃/min;(>1500)~1700℃,3~5℃/min。溫度升至1500~1700℃時,通入氮氣,並調節氮氣和氫氣的流量,使氫氣在混合氣體中佔20%(體積百分數),混合氣體總流量為1000mL/min。然後將灰球逐個投入坩堝中熔融,直到熔體高度達到25~30mm(一般約需50~60g煤灰)為止。熔融過程中應防止熔體起泡溢出。全部灰球熔完後,保溫10min以上,待熔體中氣泡完全消失後,用一根直徑1.5mm的鉬絲插入熔體至坩堝底,然後立即抽出,於冷水中急冷,由鉬絲上的熔體跡量出熔體高度D(mm)。
將測桿小心放入爐內坩堝中央,並調節它的高度使其插入熔體15mm,即黏度計高度標尺讀數H2滿足以下要求:H2=H1+D-15。
圖73.33 煤灰黏度曲線圖
開動黏度計進行降溫測定,根據黏度變化情況每隔20~50℃測定一點。每點測定時應先恆溫(Δt=±2℃)10~15min,待溫度和毫秒計讀數都穩定後開始測定,每5min讀取一次溫度和毫秒數,連續3次,取其平均值為該點溫度和毫秒數。當黏度大於50Pa·s(或100Pa·s)時停止試驗,並迅速將測桿提升至爐外,取下,浸入冷水中冷卻。爐溫降至1000℃以下時,斷電、停止通氮氣,溫度降至400℃以下時停止通氫氣。
根據各測定點的毫秒計讀數(減去零點讀數)從黏度計標定曲線上查出相應的黏度。以溫度為橫坐標,黏度為縱坐標,繪制溫度-黏度曲線(圖73.33)。
每個灰樣進行兩次重復測定,同一溫度下的黏度相差不得大於平均值的20%。
注意事項
1)灰黏度和灰成分的關系。煤灰成分中,影響黏度的主要因素是二氧化硅、氧化鋁、氧化鐵和三價鐵,以及氧化鈣與氧化鎂的含量。其中SiO2和Al2O3能提高灰的黏度;Fe2O3、CaO和MgO能降低灰的黏度;三價鐵百分率增加時,灰黏度增加,臨界黏度溫度升高。當Fe2O3含量高、SiO2含量低時,增加SiO2含量反而會降低黏度。此外,Na2O也能降低黏度。
灰渣的流動性不僅取決於它的化學成分,也取決於它的礦物質組成。化學成分相同但礦物組成不同的灰渣,完全可能有不同的流動性。只有在真液范圍內灰渣的黏度才完全取決於它的化學成分,而與各成分的來源(即礦物質組成)無關。因此,有關灰黏度和化學成分關系的研究,多數都局限於真液范圍內。
用灰成分預測其流動性的方法,比較成熟和廣泛應用的是當量二氧化硅百分率和鹼酸比法。在真液狀態下,當量二氧化硅百分率或鹼酸比相同的灰渣,具有相同的流動性。該兩參數的定義如下:
岩石礦物分析第四分冊資源與環境調查分析技術
以上兩公式中各化學式代表該成分在煤灰中的質量分數。
岩石礦物分析第四分冊資源與環境調查分析技術
2)煤灰的臨界黏度溫度(TCV)和軟化溫度(TST)的關系某些煤灰渣從真液狀態冷卻時,其黏度沿著對數曲線下降,到一定溫度後,黏度變化即偏離此曲線,該偏離點的溫度就是臨界黏度溫度。它的出現是由於液渣在冷卻過程中逐漸析出固體晶粒,使之由牛頓流動狀態轉變為塑性狀態所至。
臨界黏度溫度(℃)和軟化溫度(℃)間有較好的下列線性關系:
岩石礦物分析第四分冊資源與環境調查分析技術
⑸ 檢測黏度的常用方法
1、 GB 2794—81 膠粘劑黏度測定方法(旋轉黏度計法)本測定方法在環氧樹脂生產及應用中已使用多年。多採用同濟大學機電廠生產的NDJ-97型旋轉式黏度計。適用於測量各種牛頓液體的絕對黏度和非牛頓液體的旋轉表觀黏度。它有三種單元測定器,每單元包括一個測定容器。附有若干只轉子。根據試樣黏度大小選用某單元測定容器和配套轉子及轉速,使讀數在刻度盤的20%—85%范圍內,將轉子垂直浸入試樣中心。使液面至轉子液位標線。在(25±0.5)℃下測定。記錄轉子旋轉(60±2)s時的指示數值。對高黏度試樣記錄(120±2)s時的讀數。試驗結果按儀器要求計算。應表明旋轉黏度計的型號,轉子編號,轉速和測定溫度。
2、 杯式黏度計法(GB 1723—79塗料黏度測定法)杯式黏度計又稱塗—1杯和塗—4杯黏度計,是一類構造簡單的黏度計。多用於黏度小的環氧樹脂及環氧樹脂膠液。其原理是從杯內通過規定的尺寸的底孔流出等體積的恆溫液體的時間長短來判斷黏度的大小,時間長黏度大,時間短則黏度小。所測數據不能互換。應表明杯號。塗—杯規定流體的體積為50ml。底孔孔徑為φ5.6mm。孔長14.0mm;塗-4杯規定杯內流體流完斷線為止,(約100ml),底孔孔徑為φ4.0mm,孔長4.0mm。塗—1杯有水浴套,塗—4杯只測室溫黏度。
操作要點:黏度杯和樹脂試樣,應在測試溫度下恆溫處理。堵好孔底,將恆溫樹脂試樣倒入杯內至滿並刮平。靜置片刻使試樣中的氣泡逸出。抽開底孔時應立即用秒錶計時。塗-1杯底孔下用量筒接收流出物,當剛達到50ml時,停秒錶,記錄時間。塗-4杯底孔下用150ml燒杯接收流出物。當流出物連續線中斷成滴狀時,停止秒錶,記錄時間,黏度以s表示。
⑹ 運動粘度的計算公式
τ(動力粘度)= ηdv/dx =ηD(牛頓公式) 其中η與材料性質有關。
運動黏度即流體的動力粘度與同溫度下該流體密度ρ之比。單位為(m^2)/s。用小寫字母v表示。
牛頓流體:符合牛頓公式的流體。 粘度只與溫度有關,與切變速率無關, τ與D為正比關系。
非牛頓流體:不符合牛頓公式 τ/D=f(D),以ηa表示一定(τ/D)下的粘度,稱表觀粘度。
(6)黏度測定法的計算方法擴展閱讀
各國通常用的條件粘度有以下三種
①恩氏粘度又叫恩格勒(Engler)粘度。是一定量的試樣,在規定溫度(如:50℃、80℃、100℃)下,從恩氏粘度計流出200毫升試樣所需的時間與蒸餾水在20℃流出相同體積所需要的時間(秒)之比。溫度tº時,恩氏粘度用符號Et表示,恩氏粘度的單位為條件度。
②賽氏粘度,即賽波特(sagbolt)粘度。是一定量的試樣,在規定溫度(如100ºF、F210º;F或122ºF等)下從賽氏粘度計流出200毫升所需的秒數,以"秒"單位。賽氏粘度又分為賽氏通用粘度和賽氏重油粘度(或賽氏弗羅(Furol)粘度)兩種。
③雷氏粘度即雷德烏德(Redwood)粘度。是一定量的試樣,在規定溫度下,從雷氏度計流出50毫升所需的秒數,以"秒"為單位。雷氏粘度又分為雷氏1號(Rt表示)和雷氏2號(用RAt表示)兩種。
⑺ 粘度的測定方法是什麼
運動粘度:在溫度t℃時運動粘度用符號γ表示,在國際單位制中,運動粘度單位為斯,即每秒平方米(m2/s),實際測定中常用厘斯,(cst)表示厘斯的單位為每秒平方毫米(即1cst=1mm2/s)。運動粘度廣泛用於測定噴氣燃料油、柴油、潤滑油等液體石油產品深色石油產品、使用後的潤滑油、原油等的粘度,運動粘度的測定採用逆流法。
動力粘度:ηt是二液體層相距1厘米,其面積各為1(平方厘米)相對移動速度為1厘米/秒時所產生的阻力,單位為克/里米·秒,1克/厘米·秒=1泊,通常工業上動力粘度單位用泊來表示。
(7)黏度測定法的計算方法擴展閱讀:
注意事項:
儀器的性能指標必須滿足國家計量檢定規程度要求。使用中的儀器要進行周期檢定,必要時(儀器使用頻繁或處於合格臨界狀態)要進行中間自查以確定其計量性能合格系數誤差在允許范圍內否則無法獲得准確數據。
測量容器(外筒)的選擇。對於雙筒旋轉粘度計要仔細閱讀儀器說明書,不同的轉子(內筒)匹配相應的外筒,否則測量結果會偏差巨大。對於單一圓筒旋轉粘度計原理上要求外筒半徑無限大,實際測量時要求外筒即測量容器的內徑不低於某一尺寸。
⑻ 原油黏度的測定
方法提要
在某一恆定溫度下,測定一定體積的液體在重力下流過一個標定好的玻璃毛細管黏度計的時間,黏度計的毛細管常數與流動時間的乘積,即為該溫度下流動液體的運動黏度。在溫度 t 時運動黏度用符號 νt表示。該溫度下運動黏度和同溫度下液體的密度之積為該溫度下液體的動力黏度,用符號nt表示。
儀器和設備
毛細管黏度計 (參見圖72.7) 。
恆溫設備 恆溫范圍 -60~120℃,精度 0.5℃以上。
秒錶精度 0.1s。
鉛垂。
分析步驟
1) 將毛細管黏度計調整成為垂直狀態,要利用鉛垂線從兩個相互垂直的方向去檢查毛細管 1 的垂直情況。將恆溫浴調整到規定的溫度,把裝好試樣的黏度計浸在恆溫浴內恆溫如表72.6 所規定的時間。
表72.6 黏度計在恆溫浴中的恆溫時間
2) 利用毛細管黏度計管身 4 所套著的橡皮管將試樣吸入擴張部分,使試樣液面稍高於標線 a,並且注意不要讓毛細管和擴張部分 2 中的液體產生氣泡或裂隙。
3) 此時觀察試樣在管身中的流動情況,液面正好到達標線 a 時,開動秒錶,液面正好流到標線 b 時,停止秒錶。
試樣的液面在擴張部分 2 中流動時,注意恆溫浴中正在被攪拌的液體要保持恆定溫度,而且擴張部分中不應出現氣泡。
4) 用秒錶記錄下來的流動時間,應重復測定至少 4 次,其中各次流動時間與其算術平均值的差數應符合如下要求: 在溫度100~ -10℃以上測定黏度時,這個差數不應超過算術平均值的 ±0.5%; 在 -10~ -30℃溫度測定黏度時,這個差數不應超過算術平均值的 ±1.5%; 在低於 -30℃溫度測定黏度時,這個差數不應超過算術平均值的 ±2.5%。
然後,取不少於 3 次的流動時間所得的算術平均值,作為試樣的平均流動時間。
結果計算
按下式計算試樣的運動黏度 ν:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:νt為溫度t時運動黏度(該溫度下運動黏度和同溫度下液體的密度之積為該溫度下液體的動力黏度nt),mm2;C為黏度計常數,mm2/s(厘斯);τt為試樣的平均流動時間,s。
例:黏度計常數為0.478mm2/s,試樣於50℃的流動時間為318.0s、332.4s、322.6s、321.0s,流動時間的算術平均值為:
岩石礦物分析第四分冊資源與環境調查分析技術
318.0s與平均流動時間之差超過1.6s(0.5%),故該值應棄去,只採用觀測讀數322.4s、322.6s、321.0s(與算術平均值之差不超過0.5%)計算平均流動時間:
岩石礦物分析第四分冊資源與環境調查分析技術
試樣運動黏度的測定結果為:
岩石礦物分析第四分冊資源與環境調查分析技術
⑼ 黏度的測定方法
黏度測定有:動力黏度、運動黏度和條件黏度三種測定方法。
(1)動力黏度:ηt是二液體層相距1厘米,其面積各為1(平方厘米)相對移動速度為1厘米/秒時所產生的阻力,單位為克/厘米·秒。1克/厘米·秒=1泊一般:工業上動力黏度單位用泊來表示。
(2)運動黏度:在溫度t℃時,運動黏度用符號γ表示,在國際單位制中,運動黏度單位為斯,即每秒平方米(m²/s),實際測定中常用厘斯,(cst)表示厘斯的單位為每秒平方毫米(即 1cst=1mm²/s)。運動黏度廣泛用於測定噴氣燃料油、柴油、潤滑油等液體石油產品深色石油產品、使用後的潤滑油、原油等的黏度,運動黏度的測定採用逆流法
(3)條件黏度:指採用不同的特定黏度計所測得的以條件單位表示的黏度,各國通常用的條件黏度有以下三種:
①恩氏黏度又叫思格勒(Engler)黏度。是一定量的試樣,在規定溫度(如:50℃、80℃、100℃)下,從恩氏黏度計流出200毫升試樣所需的時間與蒸餾水在20℃流出相同體積所需要的時間(秒)之比。溫度tº時,恩氏黏度用符號Et表示,恩氏黏度的單位為條件度。
②賽氏黏度,即賽波特(sagbolt)黏度。是一定量的試樣,在規定溫度(如100ºF、F210ºF或122ºF等)下從賽氏黏度計流出200毫升所需的秒數,以「秒」單位。賽氏黏度又分為賽氏通用黏度和賽氏重油黏度(或賽氏弗羅(Furol)黏度)兩種。
③雷氏黏度即雷德烏德(Redwood)黏度。是一定量的試樣,在規定溫度下,從雷氏度計流出50毫升所需的秒數,以「秒」為單位。雷氏黏度又分為雷氏1號(Rt表示)和雷氏2號(用RAt表示)兩種。