① 對數函數的運算公式.
對數的運算性質
當a>0且a≠1時,M>0,N>0,那麼:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)
(5)換底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
設a=n^x則a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)對數恆等式:a^log(a)N=N;
log(a)a^b=b 證明:設a^log(a)N=X,log(a)N=log(a)X,N=X
(8)由冪的對數的運算性質可得(推導公式)
1.log(a)M^(1/n)=(1/n)log(a)M , log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M , log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M , log(a^n)M^m=(m/n)log(a)M
4.log(以 n次根號下的a 為底)(以 n次根號下的M 為真數)=log(a)M ,
log(以 n次根號下的a 為底)(以 m次根號下的M 為真數)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
② 對數運算性質的推導過程是什麼
對數運算性質的推導過程如下:
由對數的定義:如果a的x次方等於M(a>0,且a不等於1),那麼數x叫做以a為底M的對數,記作x=logaM。
a^x=M,x=logaM。
(a^x)^n=M^n。
a^(nx)=M^n。
nx=logaM^n。
∵x=logaM。
∴nlogaM=logaM^n。
即logaM^n=nlogaM。
對數的應用。
對數在數學內外有許多應用。這些事件中的一些與尺度不變性的概念有關。例如,鸚鵡螺的殼的每個室是下一個的大致副本,由常數因子縮放。這引起了對數螺旋。Benford關於領先數字分配的定律也可以通過尺度不變性來解釋。
對數也與自相似性相關。例如,對數演算法出現在演算法分析中,通過將演算法分解為兩個類似的較小問題並修補其解決方案來解決問題。自相似幾何形狀的尺寸,即其部分類似於整體圖像的形狀也基於對數。對數刻度對於量化與其絕對差異相反的值的相對變化是有用的。
③ 對數運算性質的八個推導公式。並要有推導過程。
loga(mn)=logam+logan
證明:
設logam=p,logan=q,由對數的定義可以寫成m=ap,n=aq.所以
m·n=ap·aq=ap+q,
所以
loga(m·n)=p+q=logam+logan.
即
loga(mn)=logam+logan.
每個對數都有意義,即m>0,n>0;a>0且a≠1.
除法一樣證,謝謝
附
證明logam
n(指數)=nlogam
logam=x,logan=y
得a^x=m,a^y=n
∴mn=a^xa^y=a^(x+y)
得x+y=loga(mn),即logam+logan=logamn
設logam=x,即a^x=m,得(a^x)n=m^n,即a^(nx)=m^n
∴loga^m(^n)=nx=nlogam
得證
④ 對數公式推導
對數公式推導:log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b),loga(b)×logb(a)=1,loge(x)=ln(x),lg(x)=log10(x)。
對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。
⑤ 對數公式的運演算法則
運演算法則公式如下:
1.lnx+ lny=lnxy
2.lnx-lny=ln(x/y)
3.lnxⁿ=nlnx
4.ln(ⁿ√x)=lnx/n
5.lne=1
6.ln1=0
拓展內容:
對數運演算法則(rule of logarithmic operations)一種特殊的運算方法.指積、商、冪、方根的對數的運演算法則。
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。 這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。 在簡單的情況下,乘數中的對數計數因子。
更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。
由指數和對數的互相轉化關系可得出:
1.兩個正數的積的對數,等於同一底數的這兩個數的對數的和,即
⑥ 對數的計算方法
計算對數我們利用對數公式即可,按照對數函數y=log(a)X,已知常數a的大小,再代入未知數X,既可以求出Y的值。這里的Y就是X以a為底的時對數。
對數公式是什麼
對數公式是數學公式中的一種,a^Y=X(a>0,且a≠1),則Y=log(a)X。在這個公式中,a叫做底數,X叫做真數,而Y叫做以a為底的X的對數。當a=10時,其對數叫做常用對數;當對數公式以e為底時,這時的對數就叫做自然對數。
對數公式的證明
已知a^log(a)(N)=N (a>0 ,a≠1),則可推導出恆等式:log(a) (a^N)=N;證明在a>0且a≠1,N>0時,可以設:當log(a)(N)=t,如果滿足(t∈R)則有a^t=N,最後得出結論a^(log(a)(N))=a^t=N;因此該恆等式成立。
根據對數公式的推導公式
設b=a^m,a=c^n,則b=(c^n)^m=c^(mn) ①對①取以a為底的對數,有:log(a)(b)=m ②對①取以c為底的對數,有:log(c)(b)=mn ③③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)。
⑦ 對數公式推導過程
用^表示乘方,用log(a)(b)表示以a為底,b的對數
*表示乘號,/表示除號
定義式:
若a^n=b(a>0且a≠1)
則n=log(a)(b)
基本性質:
1.a^(log(a)(b))=b
2.log(a)(MN)=log(a)(M)+log(a)(N);
3.log(a)(M/N)=log(a)(M)-log(a)(N);
4.log(a)(M^n)=nlog(a)(M)
推導
1.這個就不用推了吧,直接由定義式可得(把定義式中的[n=log(a)(b)]帶入a^n=b)
2.
MN=M*N
由基本性質1(換掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)]
由指數的性質
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
又因為指數函數是單調函數,所以
log(a)(MN) = log(a)(M) + log(a)(N)
3.與2類似處理
MN=M/N
由基本性質1(換掉M和N)
a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]
由指數的性質
a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因為指數函數是單調函數,所以
log(a)(M/N) = log(a)(M) - log(a)(N)
4.與2類似處理
M^n=M^n
由基本性質1(換掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指數的性質
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因為指數函數是單調函數,所以
log(a)(M^n)=nlog(a)(M)
其他性質:
性質一:換底公式
log(a)(N)=log(b)(N) / log(b)(a)
推導如下
N = a^[log(a)(N)]
a = b^[log(b)(a)]
綜合兩式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因為N=b^[log(b)(N)]
所以
b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以
log(b)(N) = [log(a)(N)]*[log(b)(a)] {這步不明白或有疑問看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
性質二:(不知道什麼名字)
log(a^n)(b^m)=m/n*[log(a)(b)]
推導如下
由換底公式[lnx是log(e)(x),e稱作自然對數的底]
log(a^n)(b^m)=ln(a^n) / ln(b^n)
由基本性質4可得
log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]}
再由換底公式
log(a^n)(b^m)=m/n*[log(a)(b)]
累死了……
⑧ 對數公式的推導
在數學中,對數是對求冪的逆運算,正如除法是乘法的倒數,反之亦然。 這意味著一個數字的對數是必須產生另一個固定數字(基數)的指數。 在簡單的情況下,乘數中的對數計數因子。更一般來說,乘冪允許將任何正實數提高到任何實際功率,總是產生正的結果,因此可以對於b不等於1的任何兩個正實數b和x計算對數。
如果a的x次方等於N(a>0,且a不等於1),那麼數x叫做以a為底N的對數(logarithm),記作x=logaN。其中,a叫做對數的底數,N叫做真數。
以a為底N的對數記作
上是增函數。
希望我能幫助你解疑釋惑。