㈠ 二進制的計算方式是
二進制參與邏輯運算,與或非常用的三種計算方式。
加法
二進制加法有四種情況: 0+0=0,0+1=1,1+0=1,1+1=10(0 進位為1) 。
乘法
二進制乘法有四種情況: 0×0=0,1×0=0,0×1=0,1×1=1 。
減法
二進制減法有四種情況:0-0=0,1-0=1,1-1=0,0-1=1 。
除法
二進制除法有兩種情況(除數只能為1):0÷1=0,1÷1=1。
以上就是運算的基礎。
在基數b的位置記數系統(其中b是一個正自然數,叫做基數),b個基本符號(或者叫數字)對應於包括0的最小b個自然數。 要產生其他的數,符號在數中的位置要被用到。最後一位的符號用它本身的值,向左一位其值乘以b。一般來講,若b是基底,我們在b進制系統中的數表示為 的形式,並按次序寫下數字a0a1a2a3...ak。這些數字是0到b-1的自然數 。
其它數制轉為二進制後再運算。
整數部分採用 "除2取余,逆序排列"法。具體做法是:用2整除十進制整數,可以得到一個商和余數;再用2去除商,又會得到一個商和余數,如此進行,直到商為小於1時為止,然後把先得到的余數作為二進制數的低位有效位,後得到的余數作為二進制數的高位有效位,依次排列起來 。
可以更多參考邏輯計算運算。
㈡ 二進制怎樣計算
二進制是一種非常古老的進位制,由於在現代被用於電子計算機中,而舊貌換新顏變得身價倍增起來。
在現實生活和記數器中,如果表示數的「器件」只有兩種狀態,如電燈的「亮」與「滅」,開關的「開」與「關」。一種狀態表示數碼0,另一種狀態表示數碼1,1加1應該等於2,因為沒有數碼2,只能向上一個數位進一,就是採用「滿二進一」的原則,這和十進制是採用「滿十進一」原則完全相同。
1+1=10,10+1=11,11+1=100,100+1=101,
101+1=110,110+1=111,111+1+=1000,……,
可見二進制的10表示二,100表示四,1000表示八,10000表示十六,……。
二進制同樣是「位值制」。同一個數碼1,在不同數位上表示的數值是不同的。如11111,從右往左數,第一位的1就是一,第二位的1表示二,第三位的1表示四,第四位的1表示八,第五位的1表示十六。用大家熟悉的十進制說明這個二進制數的含意,有以下關系式
(11111)(二進制)=1×24+1×23+1×22+1×2+1(十進制)
一個二進制整數,從右邊第一位起,各位的計數單位分別是1,2,22,23,…,2n,…。
計算機內部之所以採用二進制,其主要原因是二進制具有以下優點:
(1)技術上容易實現。用雙穩態電路表示二進制數字0和1是很容易的事情。
(2)可靠性高。二進制中只使用0和1兩個數字,傳輸和處理時不易出錯,因而可以保障計算機具有很高的可靠性。
(3)運算規則簡單。與十進制數相比,二進制數的運算規則要簡單得多,這不僅可以使運算器的結構得到簡化,而且有利於提高運算速度。
(4)與邏輯量相吻合。二進制數0和1正好與邏輯量「真」和「假」相對應,因此用二進制數表示二值邏輯顯得十分自然。
(5)二進制數與十進制數之間的轉換相當容易。人們使用計算機時可以仍然使用自己所習慣的十進制數,而計算機將其自動轉換成二進制數存儲和處理,輸出處理結果時又將二進制數自動轉換成十進制數,這給工作帶來極大的方便。
二進制計演算法就是只用1和零來表示數字,我們平常說的是十進制,它是由0到9十個數字來表示的,具體的表示方法是,比如二進制0就是十進制的0,01就是十進制的1 11就是十進制的3, 100就是十進制的4。
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
加法法則: 0+0=0,0+1=1,1+0=1,1+1=10
減法,當需要向上一位借數時,必須把上一位的1看成下一位的(2)10。
減法法則: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1當(10) 看成 2 則 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。
乘法法則: 0×0=0,0×1=0,1×0=0,1×1=1
除法應注意: 0÷0 =0(無意義),0÷1 =0,1÷0 =0(無意義)
除法法則: 0÷1=0,1÷1=1
㈣ 二進制的計算方法是怎樣的請舉個例子謝謝,
二進制的運算算術運算二進制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位進位);即7=111,10=10103=11。
二進制的減法:0-0=0,0-1=1(向高位借位) 1-0=1,1-1=0 (模二加運算或異或運算) ;
二進制的乘法:0 * 0 = 00 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二進制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (無意義),1÷1 = 1 ;
邏輯運算二進制的或運算:遇1得1 二進制的與運算:遇0得0 二進制的非運算:各位取反。
(4)二進制的計算方法擴展閱讀:
二進制的轉換:
二進制轉換為其他進制:
1、二進制轉換成十進制:基數乘以權,然後相加,簡化運算時可以把數位數是0的項不寫出來,(因為0乘以其他不為0的數都是0)。小數部分也一樣,但精確度較少。
2、二進制轉換為八進制:採用「三位一並法」(是以小數點為中心向左右兩邊以每三位分組,不足的補上0)這樣就可以輕松的進行轉換。例:將二進制數(11100101.11101011)2轉換成八進制數。 (11100101.11101011)2=(345.353)8
3、二進制轉換為十六進制:採用的是「四位一並法」,整數部分從低位開始,每四位二進制數為一組,最後不足四位的,則在高位加0補足四位為止,也可以不補0。
小數部分從高位開始,每四位二進制數為一組,最後不足四位的,必須在低位加0補足四位,然後用對應的十六進制數來代替,再按順序寫出對應的十六進制數。
㈤ 二進制的計算方法
二進制的計算方法是:
1.
二進制的或運算: 遇1得1。
2.
二進制的與運算: 遇0得0。
3.
二進制的非運算: 各位取反。
㈥ 二進制到底怎麼算
比如23這個數字 ,我們就讓它除以2得11餘1 ,然後11再除以2得5餘1 ,然後5再除以2得2餘1 ,
2再除以2得1餘0 ,所以23化成2進制就是10111 ,就是把余數從下往上寫下來,第一位是1 。
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統。
數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
20世紀被稱作第三次科技革命的重要標志之一的計算機的發明與應用,因為數字計算機只能識別和處理由『0』.『1』符號串組成的代碼。其運算模式正是二進制。19世紀愛爾蘭邏輯學家喬治布爾對邏輯命題的思考過程轉化為對符號"0''.''1''的某種代數演算,二進制是逢2進位的進位制。0、1是基本算符。因為它只使用0、1兩個數字元號,非常簡單方便,易於用電子方式實現。
㈦ 二進制的計算方法
加法:0+0=0;0+1=1;1+0=1;1+1=10;0進位為1。減法:0-0=0,1-0=1,1-1=0,0-1=1。
二進數轉四進制時,以小數點為起點,向左和向右兩個方向分別進行分段,每兩個數字一段,不足兩位的分別在左邊或右邊補零。
二進制數轉換成八進制數:從小數點開始,整數部分向左、小數部分向右,每3位為一組用一位八進制數的數字表示,不足3位的要用「0」補足3位,就得到一個八進制數。
二進制數轉換成十六進制數:二進制數轉換成十六進制數時,只要從小數點位置開始,向左或向右每四位二進制劃分一組(不足四位數可補0),然後寫出每一組二進制數所對應的十六進制數碼即可。
(7)二進制的計算方法擴展閱讀:
計算機採用二進制的原因:
1、技術實現簡單,計算機是由邏輯電路組成,邏輯電路通常只有兩個狀態,開關的接通與斷開,這兩種狀態正好可以用「1」和「0」表示。
2、簡化運算規則:兩個二進制數和、積運算組合各有三種,運算規則簡單,有利於簡化計算機內部結構,提高運算速度。
3、適合邏輯運算:邏輯代數是邏輯運算的理論依據,二進制只有兩個數碼,正好與邏輯代數中的「真」和「假」相吻合。
4、易於進行轉換,二進制與十進制數易於互相轉換。
5、用二進製表示數據具有抗干擾能力強,可靠性高等優點。因為每位數據只有高低兩個狀態,當受到一定程度的干擾時,仍能可靠地分辨出它是高還是低。