❶ 根號加減法怎麼算,舉例說明
先把根號里的數字能開出來的盡量開出來再同類合並。化成最簡根號。
不相等的根號下不能相加,及根號2加根號3不能化簡。就是根號2加根號3。就是1.414+1.732=3.147
但是根號75和根號125相加就是3*根號5加5*根號5最後的答案就是8*根號5.
如此而已。
❷ 根號的計算方法!
手工開根號法,只適用於任何一個整數或者有限小數開二次方.
因為網上寫不出樣式復雜的計算式,所以只能盡量書寫,然後通過口述來解釋:
假設一個整數1456456,開根號首先要從個位開暢揣扳廢殖肚幫莎爆極始,每兩位數做個標記,這里用'表示,那麼標記後變成1'45'64'56.然後根據你要開的小數位數在小數點後補0,這里的舉例開到整,則補2個0,(原因等明白該做法後自會理解),解法如下:
解法中需要說明的幾個問題:
1,算式中的....沒有意義,是因為網上無法排版,為了能把版式排得整齊點而加上的
2,為了區別小數點,所以小數點用。表示,而所有的.都是為了排版需要
3、除了1'45'64'56中的'有特殊意義,在解題中有用處外,其他的'都是為了排版和對起位置,說明數字來源而加的,取消沒有任何影響
...........1..2..0..6.8
.........-----------------------
.....1../..1'45'64'56.00........(1)
.............1
............--------
.......22..|.45.................(2)
..............44
..............--------
........240.|.1'64..............(3)
....................0
...............---------
.......2406.|.1'64'56...........(4)
..................1'44'36
.................-----------
........24128.|.20'20'00........(5)
....................19'29'74
..................----------
.......................10'26
其中第(1)步的意思是對左起第一個'號前的數字進行開方,即本題中的1進行開方.並將數字寫在上面.
第(2)步的意思是將第二個'號和第一個'號之間的數字,即45,寫下來作為被除數,把上一步已經得到並寫在上面的數字1乘以20作為除數的一部分,另一部分就得通過判斷,得到一個數字a,使得除數為(1*20+a),同時商也為a,本步驟中,判斷得到a應為2,所以除數是22,而2作為商寫到了上面,1的右邊.
第(3)步,把上一步除法計算的余數1移下來,同時把第三個'號和第二個'號之間的數字64也移下來,組成數字164作為被除數,然後重復上面的方法,把之前寫到上面的數字12乘以20再加上一個可以作為本步驟的商的數字,組成除數.因為經過判斷,本步驟只有0符合條件,所以除數是240,而商是0寫到上面,164作為余數向下移.
第(4)步,如果前面能看懂的話,這一步其實只是前面的重復,把164和56都移下來組成被除數16456,然後120乘以20再加上6組成除數,同時6本身就是商,得到余數2020.
第(5)步依然是重復,需要特殊說明的是,對於小數點後面的數字,用0補位數就可以了,依然是兩位加個'號,做法不變.
上面就是基本步驟了,總結起來就是先分位數,然後對第一個分位數字進行開方,如果有餘數就想下移,和第二個分位組成被除數.而除數是之前已經得到的商乘以20加上某數字組成,而這個數字要在這個步驟中作為商出現的,所以這個數字是0-9中的哪個數字,得進行心算或口算來判斷,得到余數再下移,一直重復到得到答案.
其中還要說明的是每一步得到的余數一定不能比除數大,也不能小於0,不然是無效的,說明選擇做商的數字是不對的.
❸ 根號的計算方法
分解該數字,並找出其中包含的完全平方數,將根號內部變成完全平方形式,再開方。如果該數字是偶數,除以2。尋找一個數的因數意味著尋找一切可以通過相乘得到該數字的數字,看看你是否可以繼續將它分解為因數的乘積。
(1)如果下面是個有理數,一般會選擇先化到整數,就是根號裡面上下都乘以分母,然後把分母先開根號開出來,然後在處理裡面的整數,一般是看出哪個因數的平方就把它先提出來,直接點的方式就是將那個整數寫成因式分解後的式子。
(2)如果下面也是無理數的話,比如√(4+2√3)的話,我沒什麼好辦法,就是靠感覺看了,比如給出的這個就等於1+√3,大概就是看看能不能湊成完全平方項的形式。我曾經試過假設展開後式子平方和原來比較來試圖解出方程,結果發現好和原來的還是差不多,你可以再試試。
(3)補充:如果下面是代數式的話,方法也差不多,因式分解後找到因式次數大於2的提出來一項,這樣就可以達到化簡後的式子,不過要注意的是開出來的部分是需要絕對值的。
根號簡介
根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
1、偶次根號下不能為負數,其運算結果也不為負。
2、奇次根號下可以為負數。
❹ 根號運演算法則
√a+√b=√b+√a√a-√b=-(√b-√a)√a*√b=√(a*b)√a/√b=√(a/b)
❺ 根號怎麼算
1、√ab=√a·√b﹙a≥0b≥0﹚ 這個可以交互使用.這個最多運用於化簡,如:√8=√4·√2=2√2
2、√a/b=√a÷√b﹙a≥0b﹥0﹚
3、√a²=|a|(其實就是等於絕對值)這個知識點是二次根式重點也是難點。當a>0時,√a²=a(等於它的本身);當a=0時,√a²=0;當a<0時,√a²=-a(等於它的相反數)
4、分母有理化:分母不能有二次根式或者不能含有二次根式。當分母中只有一個二次根式,那麼利用分式性質,分子分母同時乘以相同的二次根式。如:分母是√3,那麼分子分母同時乘以√3。
當分母中含有二次根式,利用平方差公式使分母有理化。具體方法,如:分母是√5 -2(表示√5與2的差)要使分母有理化,分子分母同時乘以√5+2(表示√5與2的和)
在實數范圍內,偶次根號下不能為負數,其運算結果也不為負。奇次根號下可以為負數。不限於實數,即考慮虛數時,偶次根號下可以為負數,利用【i=√-1】即可
網路-根號
❻ 根號運算公式
計算公式
4、成立條件:a≥0,b>0,n≥2且n∈N。
(6)加根號計算方法擴展閱讀
二次根式運算注意事項:
1、二次根式相加減,先把各根式化為最簡二次根式,再合並同類二次根式。
2、二次根式的乘除法常用乘法公式或除法公式來簡化計算,運算結果一定要寫成最簡二次根式。
3、利用三角形的三邊關系進行化簡。利用二次根式的雙重非負性的性質,被開方數開方出來後,等於它的絕對值。
❼ 根號和根號相加怎麼算
根號內的數可以化成相同或相同則可以相加,不同不能相加。
如果根號裡面的數相同就可以相加減,如果根號裡面的數不相同就不可以相加減,能夠化簡到根號裡面的數相同就可以相加減了。
三種情況分別舉例如下:
(1)2√2 +3√2=5√2(根號裡面的數都是2,可以相加)
(2)2√3 +3√2(根號裡面的數一個是3,一個是2,不同不能相加)
(3)√5+√20=√5+2√5=3√5(根號內的數雖然不同,但是可以化成相同,可以相加)
(7)加根號計算方法擴展閱讀:
同理我們可以得到根號下減法的運算,根號內的數可以化成相同或相同則可以相減,不同不能相減。
(1)3√2-2√2=√2
(2)√20-√5=2√5-√5=√5
根式是數學的基本概念之一,是一種含有開方(求方根)運算的代數式,即含有根號的表達式。按根指數是偶數還是奇數,根式分別稱為偶次根式或奇次根式。
❽ 如何計算根號+根號求方法
手工開根號法,只適用於任何一個整數或者有限小數開二次方.
因為網上寫不出樣式復雜的計算式,所以只能盡量書寫,然後通過口述來解釋:
假設一個整數1456456,開根號首先要從個位開始,每兩位數做個標記,這里用'表示,那麼標記後變成1'45'64'56.然後根據你要開的小數位數在小數點後補0,這里的舉例開到整,則補2個0,(原因等明白該做法後自會理解),解法如下:
解法中需要說明的幾個問題:
1,算式中的....沒有意義,是因為網上無法排版,為了能把版式排得整齊點而加上的
2,為了區別小數點,所以小數點用。表示,而所有的.都是為了排版需要
3、除了1'45'64'56中的'有特殊意義,在解題中有用處外,其他的'都是為了排版和對起位置,說明數字來源而加的,取消沒有任何影響
❾ 根號加減法怎麼算
根式加減法法則是根式的運演算法則之一,若干根式相加減,先把各根式化成最簡根式,再合並同類根式,並將不同類的根式用運算符號連寫在一起。
(9)加根號計算方法擴展閱讀:
根式的加減法法則各個根式相加減,應先把根式化成最簡根式,然後合並同類根式。
二次根式加減法法則先把各個二次根式化簡成最簡二次根式,再把同類二次根式分別合並。
同類根式亦稱相似根式,是代數學術語,指做加減法時允許合並的諸根式,當幾個根式化成最簡根式後,如果它們的根指數和被開方數分別都相同,那麼這些根式稱為同類根式。
❿ 根號加減法的運算公式
根號內的數可以化成相同或相同則可以相加減,不同不能相加減。
如果根號裡面的數相同就可以相加減,如果根號裡面的數不相同就不可以相加減,能夠化簡到根號裡面的數相同就可以相加減了。
舉例如下:
(1)2√2 +3√2=5√2(根號裡面的數都是2,可以相加)
(2)2√3 +3√2(根號裡面的數一個是3,一個是2,不同不能相加)
(3)√5+√20=√5+2√5=3√5(根號內的數雖然不同,但是可以化成相同,可以相加)
(4)3√2-2√2=√2
(5)√20-√5=2√5-√5=√5
(10)加根號計算方法擴展閱讀:
一個數有多少個方根,這個問題既與數的所在范圍有關,也與方根的次數有關。在實數范圍內,任一實數的奇數次方根有且僅有一個,例如8的3次方根為2,-8的 3次方根為-2。
正實數的偶數次方根是兩個互為相反數的數,例如16的4次方根為2和-2;負實數不存在偶數次方根;零的任何次方根都是零。在復數范圍內,無論n是奇數或偶數,任一個非零的復數的n次方根都有n個。
當根式滿足以下三個條件時,稱為最簡根式。
①被開方數的指數與根指數互質;
②被開方數不含分母,即被開方數中因數是整數,因式是整式;
③被開方數中不含開得盡方的因數或因式。
「有理化分母」,是指通過適當的變形劃去代數式分母中根號的運算。
一般情況下,在進行根式運算及把一個根式化成最簡根式時,都要將分母有理化,兩個含有根式的代數式相乘,如果它們的積不含根號,我們就說這兩個代數式互為有理化因式。