導航:首頁 > 計算方法 > 電腦顯卡加工方法

電腦顯卡加工方法

發布時間:2022-07-11 21:13:58

『壹』 電腦的顯卡是如何工作的,為什麼各種型號的顯卡的性能不一樣

顯卡接收到CPU發的工作處理命令後,接手圖像處理,通過SP,流處理器的加工,變為模擬信號,儲存在顯存當中,然後通過輸出線材輸出模擬信號給顯示器,顯示器通過解碼呈現畫面。

『貳』 哪些東西可以給電腦顯卡加焊

如果是GPU核心那種封裝的話。。
好像需要6位數的機器,具體叫啥忘了。帶顯微鏡的。。
我覺得你要不把這當生意,拿熱風槍加熱一下就好了,復活幾率很高的。。

『叄』 顯卡晶元的製作

顯示晶元的製造與CPU一樣,也是用微米來衡量其加工精度的。製造工藝的提高,意味著顯示晶元的體積將更小、集成度更高,可以容納更多的晶體管,性能會更加強大,功耗也會降低。

和中央處理器一樣,顯示卡的核心晶元,也是在硅晶片上製成的。採用更高的製造工藝,對於顯示核心頻率和顯示卡集成度的提高都是至關重要的。而且重要的是製程工藝的提高可以有效的降低顯卡晶元的生產成本。

微電子技術的發展與進步,主要是靠工藝技術的不斷改進,使得器件的特徵尺寸不斷縮小,從而集成度不斷提高,功耗降低,器件性能得到提高。晶元製造工藝在1995年以後,從0.5微米、0.35微米、0.25微米、0.18微米、0.15微米、0.13微米、0.11微米、0.09微米一直發展到當前的0.08微米。
下面是我找到的cpu製作工藝:
作為計算機的核心組件,CPU(Central Processor Unit,中央處理器)在用戶的心中一直是十分神秘的:在多數用戶的心目中,它都只是一個名詞縮寫,他們甚至連它的全寫都拚不出來;在一些硬體高手的眼裡,CPU也至多是一塊十餘平方厘米,有很多腳的塊塊兒,而CPU的核心部分甚至只有不到一平方厘米大。他們知道這塊不到一平方厘米大的玩意兒是用多少微米工藝製成的,知道它集成了幾億幾千萬晶體管,但鮮有了解CPU的製造流程者。今天,就讓我們來詳細的了解一下,CPU是怎樣練成的。

基本材料

多數人都知道,現代的CPU是使用硅材料製成的。硅是一種非金屬元素,從化學的角度來看,由於它處於元素周期表中金屬元素區與非金屬元素區的交界處,所以具有半導體的性質,適合於製造各種微小的晶體管,是目前最適宜於製造現代大規模集成電路的材料之一。從某種意義上說,沙灘上的沙子的主要成分也是硅(二氧化硅),而生產CPU所使用的硅材料,實際上就是從沙子裡面提取出來的。當然,CPU的製造過程中還要使用到一些其它的材料,這也就是為什麼我們不會看到Intel或者AMD只是把成噸的沙子拉往他們的製造廠。同時,製造CPU對硅材料的純度要求極高,雖然來源於廉價的沙子,但是由於材料提純工藝的復雜,我們還是無法將一百克高純硅和一噸沙子的價格相提並論。

製造CPU的另一種基本材料是金屬。金屬被用於製造CPU內部連接各個元件的電路。鋁是常用的金屬材料之一,因為它廉價,而且性能不差。而現今主流的CPU大都使用了銅來代替鋁,因為鋁的電遷移性太大,已經無法滿足當前飛速發展的CPU製造工藝的需要。所謂電遷移,是指金屬的個別原子在特定條件下(例如高電壓)從原有的地方遷出。

很顯然,如果不斷有原子從連接元件的金屬微電路上遷出,電路很快就會變得千瘡百孔,直到斷路。這也就是為什麼超頻者嘗試對Northwood Pentium 4的電壓進行大幅度提升時,這塊悲命的CPU經常在「突發性Northwood死亡綜合症(Sudden Northwood Death Syndrome,SNDS)」中休克甚至犧牲的原因。SNDS使得Intel第一次將銅互連(Copper Interconnect)技術應用到CPU的生產工藝中。銅互連技術能夠明顯的減少電遷移現象,同時還能比鋁工藝製造的電路更小,這也是在納米級製造工藝中不可忽視的一個問題。

不僅僅如此,銅比鋁的電阻還要小得多。種種優勢讓銅互連工藝迅速取代了鋁的位置,成為CPU製造的主流之選。除了硅和一定的金屬材料之外,還有很多復雜的化學材料也參加了CPU的製造工作。

准備工作

解決製造CPU的材料的問題之後,我們開始進入准備工作。在准備工作的過程中,一些原料將要被加工,以便使其電氣性能達到製造CPU的要求。其一就是硅。首先,它將被通過化學的方法提純,純到幾乎沒有任何雜質。同時它還得被轉化成硅晶體,從本質上和海灘上的沙子劃清界限。

在這個過程中,原材料硅將被熔化,並放進一個巨大的石英熔爐。這時向熔爐里放入一顆晶種,以便硅晶體圍著這顆晶種生長,直到形成一個幾近完美的單晶硅。如果你在高中時把硫酸銅結晶實驗做的很好,或者看到過單晶冰糖是怎麼製造的,相信這個過程不難理解。同時你需要理解的是,很多固體物質都具有晶體結構,例如食鹽。CPU製造過程中的硅也是這樣。小心而緩慢的攪拌硅的熔漿,硅晶體包圍著晶種向同一個方向生長。最終,一塊硅錠產生了。

現在的硅錠的直徑大都是200毫米,而CPU廠商正在准備製造300毫米直徑的硅錠。在確保質量不變的前提下製造更大的硅錠難度顯然更大,但CPU廠商的投資解決了這個技術難題。建造一個生產300毫米直徑硅錠的製造廠大約需要35億美元,Intel將用其產出的硅材料製造更加復雜的CPU。而建造一個相似的生產200毫米直徑硅錠的製造廠只要15億美元。作為第一個吃螃蟹的人,Intel顯然需要付出更大的代價。花兩倍多的錢建造這樣一個製造廠似乎很劃不來,但從下文可以看出,這個投資是值得的。硅錠的製造方法還有很多,上面介紹的只是其中一種,叫做CZ製造法。

硅錠造出來了,並被整型成一個完美的圓柱體,接下來將被切割成片狀,稱為晶圓。晶圓才被真正用於CPU的製造。一般來說,晶圓切得越薄,相同量的硅材料能夠製造的CPU成品就越多。接下來晶圓將被磨光,並被檢查是否有變形或者其它問題。在這里,質量檢查直接決定著CPU的最終良品率,是極為重要的。

『肆』 求電腦顯卡拆裝詳細過程、方法、步驟、注意事項……

卸載原有的顯卡驅動-關機-斷電-換新顯卡-通電並開機-安裝新顯卡驅動。
注意:必須要卸載原有驅動和斷電。

『伍』 電腦顯卡製作工藝

40nm和55nm指的是顯卡顯示晶元(GPU)中晶體管的寬度,這個值越小,意味著製造工藝更加先進,同尺寸晶圓切割下來的晶元會更多(降低單顆晶元的成本),同單位面積的晶元上晶體管可以做得更多,功耗更低,發熱量也更低。現在的顯示晶元上的晶體管動輒幾億甚者十幾億,功耗很大(看到過那些布滿巨大的散熱片和風扇吧),所以製作工藝更加先進,既可以在同樣的GPU技術下做出更快的顯卡,也可以降低顯卡的功耗。如果你是專業作圖用的話,建議你購買專業的圖形處理卡,價格偏貴,但渲染阿速度是普通娛樂級的顯卡不可比的,如nvidia的quadro系列和AMD-Ati的firegl系列。

『陸』 自己怎麼組裝電腦的顯卡

首先確認你的主板上面有預留的PCI-E插槽,
然後購買一塊你相中的顯卡,購買前確定一下你的電源足以承擔顯卡的負荷。
最後插卡入槽,連接好顯示器,進入系統後安裝顯卡驅動,重啟,OK

『柒』 電腦知識—顯卡

顯卡作為電腦主機里的一個重要組成部分,對於喜歡玩游戲和從事專業圖形設計的人來說顯得非常重要。目前民用顯卡圖形晶元供應商主要包括ATI和nVIDIA兩家。 顯示卡(Display Card)的基本作用就是控制計算機的圖形輸出,由顯示卡連接顯示器,我們才能夠在顯示屏幕上看到圖象,顯示卡有顯示晶元、顯示內存、RAMDAC等組成,這些組件決定了計算機屏幕上的輸出,包括屏幕畫面顯示的速度、顏色,以及顯示解析度。顯示卡從早期的單色顯示卡、彩色顯示卡、加強型繪圖顯示卡,一直到VGA(Video Graphic Array)顯示繪圖數組,都是由IBM主導顯示卡的規格。VGA在文字模式下為720*400解析度,在繪圖模式下為640*480*16色,或320*200*256色,而此256色顯示模式即成為後來顯示卡的共同標准,因此我們通稱顯示卡為VGA。而後來各家顯示晶元廠商更致力將VGA的顯示能力再提升,而有SVGA(SuperVGA)、XGA(eXtended Graphic Array)等名詞出現,近年來顯示晶元廠商更將3D功能與VGA整合在一起, 即成為我們目前所貫稱的3D加速卡,3D繪圖顯示卡。

集成顯卡
集成顯卡是指晶元組集成了顯示晶元,使用這種晶元組的主板就可以不需要獨立顯卡實現普通的顯示功能,以滿足一般的家庭娛樂和商業應用,節省用戶購買顯卡的開支。集成了顯卡的晶元組也常常叫做整合型晶元,這樣的主板也常常被稱之為整合型主板。集成的顯卡不帶有顯存,使用系統的一部分主內存作為顯存,具體的數量一般是系統根據需要自動動態調整的。顯然,如果使用集成顯卡運行需要大量佔用顯存的程序,對整個系統的影響會比較明顯,此外系統內存的頻率通常比獨立顯卡的顯存低很多,因此集成顯卡的性能比獨立顯卡差很多。

GPU (顯示晶元)

全稱是Graphic Processing Unit,中文翻譯為"圖形處理器"。NVIDIA公司在發布GeForce 256圖形處理晶元時首先提出的概念。GPU使顯卡減少了對CPU的依賴,並進行部分原本CPU的工作,尤其是在3D圖形處理時。GPU所採用的核心技術有硬體T&l、立方環境材質貼圖和頂點混合、紋理壓縮和凹凸映射貼圖、雙重紋理四像素256位渲染引擎等,而硬體T&l技術可以說是GPU的標志。
顯示晶元是顯卡的核心晶元,它的性能好壞直接決定了顯卡性能的好壞,它的主要任務就是處理系統輸入的視頻信息並將其進行構建、渲染等工作。顯示主晶元的性能直接決定了顯示卡性能的高低。不同的顯示晶元,不論從內部結構還是其性能,都存在著差異,而其價格差別也很大。顯示晶元在顯卡中的地位,就相當於電腦中CPU的地位,是整個顯卡的核心。因為顯示晶元的復雜性,目前設計、製造顯示晶元的廠家只有NVIDIA、ATI、SIS、3DLabs等公司。家用娛樂性顯卡都採用單晶元設計的顯示晶元,而在部分專業的工作站顯卡上有採用多個顯示晶元組合的方式。

顯存

顯示內存的簡稱。顧名思義,其主要功能就是暫時將儲存顯示晶元要處理的數據和處理完畢的數據。圖形核心的性能愈強,需要的顯存也就越多。以前的顯存主要是DDR的,容量也不大。而現在市面上基本採用的都是DDR2規格的,在某些高端卡上更是採用了性能更為出色的DDRIII代內存。

顯存頻率
顯存頻率是指默認情況下,該顯存在顯卡上工作時的頻率,以MHz(兆赫茲)為單位。顯存頻率一定程度上反應著該顯存的速度。顯存頻率隨著顯存的類型、性能的不同而不同,SDRAM顯存一般都工作在較低的頻率上,一般就是133MHz和166MHz,此種頻率早已無法滿足現在顯卡的需求。DDR SDRAM顯存則能提供較高的顯存頻率,主要在中低端顯卡上使用,DDR2顯存由於成本高並且性能一般,因此使用量不大。DDR3顯存是目前高端顯卡採用最為廣泛的顯存類型。不同顯存能提供的顯存頻率也差異很大,主要有400MHz、500MHz、600MHz、650MHz等,高端產品中還有800MHz、1200MHz、1600MHz,甚至更高。

顯存頻率與顯存時鍾周期是相關的,二者成倒數關系,也就是顯存頻率=1/顯存時鍾周期。如果是SDRAM顯存,其時鍾周期為6ns,那麼它的顯存頻率就為1/6ns=166 MHz。而對於DDR SDRAM或者DDR2、DDR3,其時鍾周期為6ns,那麼它的顯存頻率就為1/6ns=166 MHz,但要了解的是這是DDR SDRAM的實際頻率,而不是我們平時所說的DDR顯存頻率。因為DDR在時鍾上升期和下降期都進行數據傳輸,其一個周期傳輸兩次數據,相當於SDRAM頻率的二倍。習慣上稱呼的DDR頻率是其等效頻率,是在其實際工作頻率上乘以2,就得到了等效頻率。因此6ns的DDR顯存,其顯存頻率為1/6ns*2=333 MHz。具體情況可以看下邊關於各種顯存的介紹。

但要明白的是顯卡製造時,廠商設定了顯存實際工作頻率,而實際工作頻率不一定等於顯存最大頻率。此類情況現在較為常見,如顯存最大能工作在650 MHz,而製造時顯卡工作頻率被設定為550 MHz,此時顯存就存在一定的超頻空間。這也就是目前廠商慣用的方法,顯卡以超頻為賣點。此外,用於顯卡的顯存,雖然和主板用的內存同樣叫DDR、DDR2甚至DDR3,但是由於規范參數差異較大,不能通用,因此也可以稱顯存為GDDR、GDDR2、GDDR3。

顯卡核心頻率
顯卡的核心頻率是指顯示核心的工作頻率,其工作頻率在一定程度上可以反映出顯示核心的性能,但顯卡的性能是由核心頻率、顯存、像素管線、像素填充率等等多方面的情況所決定的,因此在顯示核心不同的情況下,核心頻率高並不代表此顯卡性能強勁。比如9600PRO的核心頻率達到了400MHz,要比9800PRO的380MHz高,但在性能上9800PRO絕對要強於9600PRO。在同樣級別的晶元中,核心頻率高的則性能要強一些,提高核心頻率就是顯卡超頻的方法之一。顯示晶元主流的只有ATI和NVIDIA兩家,兩家都提供顯示核心給第三方的廠商,在同樣的顯示核心下,部分廠商會適當提高其產品的顯示核心頻率,使其工作在高於顯示核心固定的頻率上以達到更高的性能。
顯存頻率
顯存頻率是指默認情況下,該顯存在顯卡上工作時的頻率,以MHz(兆赫茲)為單位。顯存頻率一定程度上反應著該顯存的速度。顯存頻率隨著顯存的類型、性能的不同而不同,SDRAM顯存一般都工作在較低的頻率上,一般就是133MHz和166MHz,此種頻率早已無法滿足現在顯卡的需求。DDR SDRAM顯存則能提供較高的顯存頻率,主要在中低端顯卡上使用,DDR2顯存由於成本高並且性能一般,因此使用量不大。DDR3顯存是目前高端顯卡採用最為廣泛的顯存類型。不同顯存能提供的顯存頻率也差異很大,主要有400MHz、500MHz、600MHz、650MHz等,高端產品中還有800MHz、1200MHz、1600MHz,甚至更高。

顯卡後綴名
核心後綴的不同雖然代表了一個核心性能的差異,但顯卡的整體性能不僅能從核心反映出來。搭配高頻率顯存的低端核心的顯卡同樣能在游戲中擁有良好的性能。首先表現在游戲的速度中,在相同的顯存位寬的前提下,顯存頻率越高,核心與顯存交換數據的速度也就越快。

顯卡位寬
顯卡的性能表現主要體現在顯存位寬,顯存頻率,顯存容量

1在這三個方面中顯存位寬影響著渲染等效果的好壞,並且影響巨大。

即使顯示核心非常優秀或顯存容量非常大,也無法彌補這種損失。當選擇顯卡的時候首先要注意的不是顯存容量而是顯存位寬。

想讓3D游戲更加精美一是增加游戲中景物使用多邊形的數量,而是使用大紋理。這些方法都需要大容量顯存的支持。

在相同或者相似的核心的情況下,盡量選擇位寬更高,頻率更高的顯存的想卡,而不是有限考慮超大的顯存容量。

顯存位寬是顯存在一個時鍾周期內所能傳送數據的位數,位數越大則瞬間所能傳輸的數據量越大,這是顯存的重要參數之一。目前市場上的顯存位寬有64位、128位和256位三種,人們習慣上叫的64位顯卡、128位顯卡和256位顯卡就是指其相應的顯存位寬。顯存位寬越高,性能越好價格也就越高,因此256位寬的顯存更多應用於高端顯卡,而主流顯卡基本都採用128位顯存。
一般出現在同品牌上的顯存位寬上,例如同為一款ATI RADEON9200但是在顯存位寬上有所不同,有些為128bit、有些為64bit,而銷售人員就經常把64bit當作128bit來賣,外觀上幾乎沒有區別,有區別的就是在顯存的個數上,而普通的消費者往往不能正確的辨識。在這里小編可以給大家介紹一種最基本的方法來比對,如果顯卡上顯存顆粒數為8顆,那麼該顯卡的位寬基本為128bit,如果顯卡上顯存顆粒數為4顆,則為64bit。以上方法只用於TSOP-II顯存的辨認,而採用mBGA封裝形式的顯存通常都為128bit因為mBGA封裝形式決定了他單顆顆粒位寬為32bit。
外頻
CPU的外頻,通常為系統匯流排的工作頻率(系統時鍾頻率),CPU與周邊設備傳輸數據的頻率,具體是指CPU到晶元組之間的匯流排速度。外頻是CPU與主板之間同步運行的速度,而且目前的絕大部分電腦系統中外頻,也是內存與主板之間的同步運行的速度,在這種方式下,可以理解為CPU的外頻直接與內存相連通,實現兩者間的同步運行狀態。

帶寬
計算機網路的帶寬是指網路可通過的最高數據率,即每秒多少比特。

描述帶寬時常常把「比特/秒」省略。

例如,帶寬是 10 M,實際上是 10 Mb/s。

這里的 M 是 10^6。

在網路中有兩種不同的速率:

信號(即電磁波)在傳輸媒體上的傳播速率(米/秒,或公里/秒)

計算機向網路發送比特的速率(比特/秒)

這兩種速率的意義和單位完全不同。

在理解帶寬這個概念之前,我們首先來看一個公式:帶寬=時鍾頻率x匯流排位數/8,從公式中我們可以看到,帶寬和時鍾頻率、匯流排位數是有著非常密切的關系的。其實在一個計算機系統中,不僅顯示器、內存有帶寬的概念,在一塊板卡上,帶寬的概念就更多了,完全可以說是帶寬無處不在。

那到底什麼是帶寬呢?帶寬的意義又是什麼?簡單的說,帶寬就是傳輸速率,是指每秒鍾傳輸的最大位元組數(MB/S),即每秒處理多少兆位元組,高帶寬則意味著系統的高處理能力。為了更形象地理解帶寬、位寬、時鍾頻率的關系,我們舉個比較形象的例子,工人加工零件,如果一個人干,在大家單個加工速度相同的情況下,肯定不如兩個人乾的多,帶寬就象是加工零件的總數量,位寬彷彿工人數量,時鍾工作頻率相當於加工單個零件的速度,位寬越寬,時鍾頻率越高則匯流排帶寬越大,其好處也是顯而易見的。

主板上通常會有兩塊比較大的晶元,一般將靠近CPU的那塊稱為北橋,遠離CPU的稱為南橋。北橋的作用是在CPU與內存、顯卡之間建立通信介面,它們與北橋連接的帶寬大小很大程度上決定著內存與顯卡效能的大小。南橋是負責計算機的I/O設備、PCL設備和硬碟,對帶寬的要求,相比較北橋而言,是要小一些的。而南北橋之間的連接帶寬一般就稱為南北橋帶寬。隨著計算機越來越向多媒體方向發展,南橋的功能也日益強大,對於南北橋間的連接匯流排帶寬也是提出了新的要求,在INTEL的9X5系列主板上,南北橋的帶寬將從以前一直為人所詬病的266MB/S發展到空前的2GB/S,一舉解決了南北橋間的帶寬瓶頸。

再來說說顯卡,玩游戲的朋友都曉得,當玩一些大製作游戲的時候,畫面有時候會卡的比較厲害。其實這就是顯卡帶寬不足的問題,再具體點說,這是顯存帶寬不足。眾所周知,目前當道的AGP介面是AGP 8X,而AGP匯流排的頻率是PCL匯流排的兩倍,也就是66MHz,很容易就可以換算出它的帶寬是2.1GB/S,在目前的環境下,這樣的帶寬就顯得很微不足道了,因為連最普通的ATI R9000的顯存帶寬都要達到400MHZ X 128Bit/8=6.4GB/s,其餘的高端顯卡更是不用說了。正因為如此,INTEL在最新的9X5晶元組中,採用了PCL-Express匯流排來替代老態龍鍾的AGP匯流排,與傳統PCI以及更早期的計算機匯流排的共享並行架構相比,PCI Express最大的特點是在設備間採用點對點串列連接,如此一來即允許每個設備都有自己的專用連接,不需要向整個匯流排請求帶寬,同時利用串列的連接特點將能輕松將數據傳輸速度提到一個很高的頻率。在傳輸速度上,由於PCI Express支持雙向傳輸模式,因此連接的每個裝置都可以使用最大帶寬。AGP所遇到的帶寬瓶頸也迎刃而解。

為了在實際使用計算機的過程中得到更多匯流排帶寬,根據帶寬的計算公式,一般會採取兩種辦法,一是增加匯流排速度,比如INTEL的P4 CPU和塞揚CPU就是最好的例子,一個是400匯流排,一個是533/800匯流排,在實際應用的效能就有了很大的區別(當然,二級緩存也是一個重要的因素)。另外一個常用的方法是增加匯流排的寬度,如果當它的時鍾速度一樣時,匯流排的寬度增加一倍,那麼盡管時鍾下降沿同未改變之前是相同而此時每次下降沿所傳輸的數據量卻是以前的兩倍,這一點在相同核心,但是顯存位寬卻不一樣的顯卡上表現特別明顯。

『捌』 電腦顯卡更換步驟

具體步驟如下:
1、首先,我們要做好更換顯卡的准備工作,要找好所需要的工具,比如:完好的顯卡,以及螺絲刀。
2、拆掉機箱後蓋,取出原來的壞的顯卡,取下來的時候,大家一定要注意,取顯卡的時候,一定不要硬拆,不要損壞了顯卡的插槽。
3、然後,將顯卡的插條與主板上面的插槽對齊,然後慢慢插進去,在這過程中一定不要硬來,插進去的時候會聽到一聲很清脆的響聲。
4、插上顯卡之後,將原來需要插入顯卡的介面,插入顯卡,然後將後蓋還原,重啟電腦。
5、如果重啟電腦的時候,電源不停的熄滅的話,這個時候,就需要將主板上面的電池拔掉,讓主板放電,這個時間最好在15-30分鍾。
6、如果電池不好取,可以先把顯卡取下來,等待15-30分鍾,主板重新安裝好電池之後,再安裝顯卡。

『玖』 顯卡加工的技術含量

由AIC和AIB從核心廠商那裡購買顯卡核心。
然後再從顯存廠商購買顯存,再購買電阻,電容等等,然後把這些東西集成在一個電路板上,這樣就把顯卡做出來了。
顯示核心、顯存位寬、核心頻率、顯存頻率、顯存類型、顯存大小,一般來說數值都是越大越好,但是N卡的9500、9600系列核心是G92的比G94的好

『拾』 電腦主板顯卡 加工廠 dip動作內容是什麼

元件成型加工 插件 過波峰焊 元件切腳 補焊 洗板 測試

閱讀全文

與電腦顯卡加工方法相關的資料

熱點內容
動物胃腸炎的治療方法 瀏覽:358
高冰岫玉的鑒別方法 瀏覽:86
聚氯乙烯膠水快速乾的方法 瀏覽:363
飛機合頁的安裝方法 瀏覽:637
華為平板電腦錄音在哪裡設置方法 瀏覽:874
燃燒成分分析方法分為哪幾種 瀏覽:940
鋁合金門鉸鏈安裝方法 瀏覽:458
光合酒花的鑒別方法 瀏覽:305
如何找到自己的賺錢方法 瀏覽:275
SL是什麼教育方法 瀏覽:690
導線測量計算表計算方法 瀏覽:881
反卷雲龍紋鑒別方法 瀏覽:356
學生如何增肥快速有效方法 瀏覽:726
125乘64用簡便方法怎麼算 瀏覽:311
蘆薈膠祛痘印最佳方法 瀏覽:927
立式縫焊機如何調整參數方法視頻 瀏覽:994
眼袋物理方法怎麼去除最有效果 瀏覽:222
健身訓練有哪些方法 瀏覽:821
標題全面深化改革有哪些方法 瀏覽:794
單側推拉櫃門下面軌道安裝方法 瀏覽:167